Objective:To evaluate the effect of the ethyl acetate fraction derived from Sargassum pallidum extract against particulate matter(PM)-induced oxidative stress and inflammation in HaCaT cells and zebrafish.Methods:HaCa...Objective:To evaluate the effect of the ethyl acetate fraction derived from Sargassum pallidum extract against particulate matter(PM)-induced oxidative stress and inflammation in HaCaT cells and zebrafish.Methods:HaCaT cells and zebrafish were used to evaluate the protective effects of the ethyl acetate fraction of Sargassum pallidum extract against PM-induced oxidative stress and inflammation.The production of nitric oxide(NO),intracellular ROS,prostaglandin E_(2)(PGE_(2)),and pro-inflammatory cytokines,and the expression levels of COX-2,iNOS,and NF-κB were evaluated in PM-induced HaCaT cells.Furthermore,the levels of ROS,NO,and lipid peroxidation were assessed in the PM-exposed zebrafish model.Results:The ethyl acetate fraction of Sargassum pallidum extract significantly decreased the production of NO,intracellular ROS,and PGE_(2) in PM-induced HaCaT cells.In addition,the fraction markedly suppressed the levels of pro-inflammatory cytokines and inhibited the expression levels of COX-2,iNOS,and NF-κB.Furthermore,it displayed remarkable protective effects against PM-induced inflammatory response and oxidative stress,represented by the reduction of NO,ROS,and lipid peroxidation in zebrafish.Conclusions:The ethyl acetate fraction of Sargassum pallidum extract exhibits a protective effect against PM-induced oxidative stress and inflammation both in vitro and in vivo and has the potential as a candidate for the development of pharmaceutical and cosmeceutical products.展开更多
Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier.However,the potential links between them following ischemic strok...Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier.However,the potential links between them following ischemic stroke remain largely unknown.The present study found that cerebral ischemia leads to oxidative stress and repression of the Wnt/β-catenin pathway.Meanwhile,Wnt/β-catenin pathway activation by the pharmacological inhibito r,TWS119,relieved oxidative stress,increased the levels of cytochrome P4501B1(CYP1B1)and tight junction-associated proteins(zonula occludens-1[ZO-1],occludin and claudin-5),as well as brain microvascular density in cerebral ischemia rats.Moreove r,rat brain microvascular endothelial cells that underwent oxygen glucose deprivation/reoxygenation displayed intense oxidative stress,suppression of the Wnt/β-catenin pathway,aggravated cell apoptosis,downregulated CYP1B1and tight junction protein levels,and inhibited cell prolife ration and migration.Overexpression ofβ-catenin or knockdown ofβ-catenin and CYP1B1 genes in rat brain mic rovascular endothelial cells at least partly ameliorated or exacerbated these effects,respectively.In addition,small interfering RNA-mediatedβ-catenin silencing decreased CYP1B1 expression,whereas CYP1B1 knoc kdown did not change the levels of glycogen synthase kinase 3β,Wnt-3a,andβ-catenin proteins in rat brain microvascular endothelial cells after oxygen glucose deprivatio n/reoxygenation.Thus,the data suggest that CYP1B1 can be regulated by Wnt/β-catenin signaling,and activation of the Wnt/β-catenin/CYP1B1 pathway contributes to alleviation of oxidative stress,increased tight junction levels,and protection of the blood-brain barrier against ischemia/hypoxia-induced injury.展开更多
Inflammatory markers and mediators that affect the development of cardiovascular diseases have been the focus of recent scientific work.Thus,the purpose of this editorial is to promote a critical debate about the arti...Inflammatory markers and mediators that affect the development of cardiovascular diseases have been the focus of recent scientific work.Thus,the purpose of this editorial is to promote a critical debate about the article titled“Nε-carboxymethyl-lysine and inflammatory cytokines,markers,and mediators of coronary artery disease progression in diabetes”,published in the World Journal of Diabetes in 2024.This work directs us to reflect on the role of advanced glycation end products,which are pro-inflammatory products arising from the metabolism of fatty acids and sugars whose main marker in tissues is Nε-carboxymethyllysine(NML).Recent studies have linked high levels of pro-inflammatory agents with the development of coronary artery disease(CAD),especially tumor necrosis factor alpha,interleukins,and C-reactive protein.These inflammatory agents increase the production of reactive oxygen species(ROS),of which people with diabetes are known to have an increased production.The increase in ROS promotes lipid peroxidation,which causes damage to myocytes,promoting myocardial damage.Furthermore,oxidative stress induces the binding of NML to its receptor RAGE,which in turn activates the nuclear factor-kB,and consequently,inflammatory cytokines.These inflammatory cytokines induce endothelial dysfunction,with increased expression of adhesion molecules,changes in endothelial permeability and changes in the expression of nitric oxide.In this sense,the therapeutic use of monoclonal antibodies(inflammatory reducers such as statins and sodium-glucose transport inhibitors)has demonstrated positive results in the regression of atherogenic plaques and consequently CAD.On the other hand,many studies have demonstrated a relationship between mitochondrial dynamics,diabetes,and cardiovascular diseases.This link occurs since ROS have their origin in the imbalance in glucose metabolism that occurs in the mitochondrial matrix,and this imbalance can have its origin in inadequate diet as well as some pathologies.Photobiomodulation(PBM)has recently been considered a possible therapeutic agent for cardiovascular diseases due to its effects on mitochondrial dynamics and oxidative stress.In this sense,therapies such as PBM that act on pro-inflammatory mediators and mitochondrial modulation could benefit those with cardiovascular diseases.展开更多
Previous studies have shown that Biochanin A,a flavonoid compound with estrogenic effects,can serve as a neuroprotective agent in the context of cerebral ischemia/reperfusion injury;howeve r,its effect on spinal cord ...Previous studies have shown that Biochanin A,a flavonoid compound with estrogenic effects,can serve as a neuroprotective agent in the context of cerebral ischemia/reperfusion injury;howeve r,its effect on spinal cord injury is still unclea r. In this study,a rat model of spinal cord injury was established using the heavy o bject impact method,and the rats were then treated with Biochanin A(40 mg/kg) via intrape ritoneal injection for 14 consecutive days.The res ults showed that Biochanin A effectively alleviated spinal cord neuronal injury and spinal co rd tissue injury,reduced inflammation and oxidative stress in spinal cord neuro ns,and reduced apoptosis and pyroptosis.In addition,Biochanin A inhibited the expression of inflammasome-related proteins(ASC,NLRP3,and GSDMD)and the Toll-like receptor 4/nuclear factor-κB pathway,activated the Nrf2/heme oxygenase 1 signaling pathway,and increased the expression of the autophagy markers LC3 Ⅱ,Beclin-1,and P62.Moreove r,the therapeutic effects of Biochanin A on early post-s pinal cord injury were similar to those of methylprednisolone.These findings suggest that Biochanin A protected neurons in the injured spinal cord through the Toll-like receptor 4/nuclear factor κB and Nrf2/heme oxygenase 1 signaling pathways.These findings suggest that Biochanin A can alleviate post-spinal cord injury at an early stage.展开更多
BACKGROUND Type 2 diabetes mellitus(T2DM)is often accompanied by impaired glucose utilization in the brain,leading to oxidative stress,neuronal cell injury and inflammation.Previous studies have shown that duodenal je...BACKGROUND Type 2 diabetes mellitus(T2DM)is often accompanied by impaired glucose utilization in the brain,leading to oxidative stress,neuronal cell injury and inflammation.Previous studies have shown that duodenal jejunal bypass(DJB)surgery significantly improves brain glucose metabolism in T2DM rats,the role and the metabolism of DJB in improving brain oxidative stress and inflammation condition in T2DM rats remain unclear.AIM To investigate the role and metabolism of DJB in improving hypothalamic oxidative stress and inflammation condition in T2DM rats.METHODS A T2DM rat model was induced via a high-glucose and high-fat diet,combined with a low-dose streptozotocin injection.T2DM rats were divided into DJB operation and Sham operation groups.DJB surgical intervention was carried out on T2DM rats.The differential expression of hypothalamic proteins was analyzed using quantitative proteomics analysis.Proteins related to oxidative stress,inflammation,and neuronal injury in the hypothalamus of T2DM rats were analyzed by flow cytometry,quantitative real-time PCR,Western blotting,and immunofluorescence.RESULTS Quantitative proteomics analysis showed significant differences in proteins related to oxidative stress,inflammation,and neuronal injury in the hypothalamus of rats with T2DM-DJB after DJB surgery,compared to the T2DM-Sham groups of rats.Oxidative stress-related proteins(glucagon-like peptide 1 receptor,Nrf2,and HO-1)were significantly increased(P<0.05)in the hypothalamus of rats with T2DM after DJB surgery.DJB surgery significantly reduced(P<0.05)hypothalamic inflammation in T2DM rats by inhibiting the activation of NF-κB and decreasing the expression of interleukin(IL)-1βand IL-6.DJB surgery significantly reduced(P<0.05)the expression of factors related to neuronal injury(glial fibrillary acidic protein and Caspase-3)in the hypothalamus of T2DM rats and upregulated(P<0.05)the expression of neuroprotective factors(C-fos,Ki67,Bcl-2,and BDNF),thereby reducing hypothalamic injury in T2DM rats.CONCLUSION DJB surgery improve oxidative stress and inflammation in the hypothalamus of T2DM rats and reduce neuronal cell injury by activating the glucagon-like peptide 1 receptor-mediated Nrf2/HO-1 signaling pathway.展开更多
Vegetable oils are a source of energy, essential fatty acids, antioxidants and fat-soluble vitamins useful for human health care and development. These oils also contribute to organoleptic quality of their products’ ...Vegetable oils are a source of energy, essential fatty acids, antioxidants and fat-soluble vitamins useful for human health care and development. These oils also contribute to organoleptic quality of their products’ derivatives. However, their chemical and physical properties can be modified by the mode of their extraction, storage and distribution. These modifications might negatively affect the nutritional quality of the oils. The goals of this study were to: sample different vegetable oils for cosmetic or dietary use marketed in Cameroon, and verify purity and oxidation states of each kind of oil through determination of its acidity, iodine, peroxide, saponification, refractive indexes and the conformity of the labeling. The carotene content, the level of polar components and specific absorbance were also determined. As the result, six oils namely palm, palm kernel, coconut, black cumin, peanut and shea butter were collected. Apart from labeling, chemicals and physicals parameters analyzed were generally in accordance with the Cameroonian and Codex Alimentarius standard. This study suggests that vegetable oils sampled in the Cameroonian market may not expose consumers to lipid oxidation products generating pathological oxidative stress and inflammation. However, efforts in application of existing standard need to be done as far as labeling are concerned.展开更多
Seagoing vessels are responsible for more than 90%of global freight traffic,but meanwhile,emission pollutants(NO_(x)and SO_(x))of seagoing vessels also cause serious air pollution.Nonthermal plasma(NTP)combined with w...Seagoing vessels are responsible for more than 90%of global freight traffic,but meanwhile,emission pollutants(NO_(x)and SO_(x))of seagoing vessels also cause serious air pollution.Nonthermal plasma(NTP)combined with wet scrubbing technology is considered to be a promising technology.In order to improve the oxidation efficiency and energy efficiency of the NTP reactor,the screw and rod inner electrodes of dielectric barrier discharge(DBD)reactor were investigated.To analyze the mechanism,the optical emission spectra(OES)of NTP were measured and numerical calculation was applied.The experiment results show that the NO oxidation removal efficiency of screw electrode is lower than that of rod electrode.However,the SO_(2)removal efficiency of screw electrode is higher.According to the OES experiment and numerical calculation,the electric field intensity of the screw electrode surface is much higher than that of the rod electrode surface,and it is easier to generate N radicals to form NO.For the same energy density condition,the OH radical generation efficiency of the screw electrode reactor is similar to that of the rod electrode,but the gas temperature in the discharge gap is higher.Therefore,the SO2 oxidation efficiency of the thread electrode is higher.This study provides guidance for the optimization of oxidation efficiency and energy consumption of DBD reactor.展开更多
Deltamethrin(DEL),a commonly used pyrethroid pesticide,results in higher reactive oxygen species(ROS)levels in aquatic animals,which consequently unbalance the redox state.Phlorizin(PHL)is a flavonoid and a natural pr...Deltamethrin(DEL),a commonly used pyrethroid pesticide,results in higher reactive oxygen species(ROS)levels in aquatic animals,which consequently unbalance the redox state.Phlorizin(PHL)is a flavonoid and a natural product promising to prevent or reduce pesticide-induced oxidative stress.Artemia is a micro-crustacean widely used in marine hatcheries and an experimental aquatic organism for environmental toxicology research.This research aimed to evaluate the toxicity of DEL on Artemia and the antioxidative effect of PHL against the toxicity.Results show that 0.08-mg/mL PHL exerted its antioxidative effects on hatching percentage of the cysts in 24-h incubation and on body length and survival rate of Artemia in 12-d culture.After 12-d culture,12-,24-,and 36-h DEL exposure showed significant drops in SOD,CAT,and GSH-Px enzyme activities,and significant increases in ROS and malondialdehyde(MDA)levels in Artemia(P<0.05).On the contrary,0.08-mg/mL PHL application improved the enzyme activities and decreased the ROS and MDA levels(P<0.05).Moreover,0.08-mg/mL PHL significantly increased mRNA expression levels of Cu/Zn SOD,CAT,GST,HO-1,NQO1,and Nrf2,and decreased mRNA expression level of Keap1 in the DEL-exposed Artemia(P<0.05).Therefore,DEL is toxic to Artemia,while PHL alleviates DEL-induced oxidative damage by possibly regulating the Nrf2signaling pathway.This study provided a theoretical basis for PHL to reduce pesticide-induced toxicity in aquatic animals.展开更多
Hearing loss is the third leading cause of human disability.Age-related hearing loss,one type of acquired sensorineural hearing loss,is largely responsible for this escalating global health burden.Noise-induced,ototox...Hearing loss is the third leading cause of human disability.Age-related hearing loss,one type of acquired sensorineural hearing loss,is largely responsible for this escalating global health burden.Noise-induced,ototoxic,and idiopathic sudden sensorineural are other less common types of acquired hearing loss.The etiology of these conditions is complex and multi-fa ctorial involving an interplay of genetic and environmental factors.Oxidative stress has recently been proposed as a likely linking cause in most types of acquired sensorineural hearing loss.Short non-coding RNA sequences known as microRNAs(miRNAs)have increasingly been shown to play a role in cellular hypoxia and oxidative stress responses including promoting an apoptotic response.Sensory hair cell death is a central histopathological finding in sensorineural hearing loss.As these cells do not regenerate in humans,it underlies the irreversibility of human age-related hearing loss.Ovid EMBASE,Ovid MEDLINE,Web of Science Core Collection,and ClinicalTrials.gov databases over the period August 1,2018 to July 31,2023 were searched with"hearing loss,""hypoxamiRs,""hypoxia,""microRNAs,""ischemia,"and"oxidative stress"text words for English language primary study publications or registered clinical trials.Registe red clinical trials known to the senior author we re also assessed.A total of 222studies were thus identified.After excluding duplicates,editorials,retra ctions,secondary research studies,and non-English language articles,39 primary studies and clinical trials underwent full-text screening.This resulted in 11 animal,in vitro,and/or human subject journal articles and 8 registered clinical trial database entries which form the basis of this narrative review.MiRNAs miR-34a and miR-29b levels increase with age in mice.These miRNAs were demonstrated in human neuroblastoma and murine cochlear cell lines to target Sirtuin 1/peroxisome proliferato r-activated receptor gamma coactivator-1-alpha(SIRT1/P GC-1α),SIRT1p53,and SIRT1/hypoxia-inducible factor 1-alpha signaling pathways resulting in increased apoptosis.Furthermore,hypoxia and oxidative stress had a similar adve rse apoptotic effect,which was inhibited by resve ratrol and a myocardial inhibitorassociated transcript,a miR-29b competing endogenous mRNA.Gentamicin reduced miR-182-5p levels and increased cochlear oxidative stress and cell death in mice-an effect that was corrected by inner ear stem cell-derived exosomes.There is ongoing work seeking to determine if these findings can be effectively translated to humans.展开更多
Seizures of agrochemical formulations have increased in Brazil and Rio Grande do Sul is among the Brazilian states with the highest number of seizures of these products obtained illicitly. The use of illicit formulati...Seizures of agrochemical formulations have increased in Brazil and Rio Grande do Sul is among the Brazilian states with the highest number of seizures of these products obtained illicitly. The use of illicit formulations can cause significant harm to agricultural production, the environment, and non-target species. This study evaluated the cytotoxicity and oxidative stress of a seized formulation containing the herbicide imazethapyr (IMZT). Characterization of the herbicide included gas chromatography-mass spectrometry (GC-MS) and thermal analyses (thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC)). Hemolytic and cytotoxicity assays in ZF-L hepatic cells showed IC50 values of 12.75 µg/mL, 3.01 µg/mL, 2.67 µg/mL, and 1.61 µg/mL for erythrocytes, [3(4,5-dimethyl)-2 bromide-5 diphenyl tetrazolium] (MTT), neutral red (NR), and lactate dehydrogenase (LDH) assays, respectively. The median IC50 of 2.84 µg/mL was used in oxidative stress assays, revealing increased reactive oxygen species (ROS) production, reduced total sulfhydryl content, and decreased superoxide dismutase (SOD) and catalase (CAT) activity. This study is the first to report in vitro oxidative stress induced by IMZT in the ZF-L cell line, emphasizing the importance of in vitro assays for assessing the toxic effects of seized agrochemicals on human health and the environment.展开更多
Pyraclostrobin(PYR),a widely used fungicide,has negative effects on fish and algae,but its toxicity in protozoa remains unclear.In this study,the effects of PYR on the growth,oxidative stress,and gene expression relat...Pyraclostrobin(PYR),a widely used fungicide,has negative effects on fish and algae,but its toxicity in protozoa remains unclear.In this study,the effects of PYR on the growth,oxidative stress,and gene expression related to stress and ATP-binding cassette(ABC)transporters in Tetrahymena thermophila were investigated.The result showed that the 96-h IC_(50)of PYR against T.thermophila was 17.2 mg/L.Moreover,PYR inhibited the growth of T.thermophila in concentration-or time-dependent manner.A morphological study revealed that the shape and size of T.thermophila changed,and damage of cell membrane surface was observed by scanning electron microscopy after 96 h of PYR exposure.The activities of superoxide dismutase(SOD)and catalase(CAT)increased throughout the experiment.In contrast,the glutathione(GSH)content was increased at 24 h and 48 h of exposure and decreased at 96 h.Moreover,a significant increase in malondialdehyde(MDA)level was observed in T.thermophila after96 h of exposure.Furthermore,PYR upregulated the HSP703,HSP705,GPx2,and ABAC15 gene expression in the 0.1–5-mg/L groups and downregulated the HSP704,HSP90,TGR,and ABCC52 mRNA levels at 96 h of exposure.These results suggest that PYR may exert adverse effects on T.thermophila by inducing oxidative stress and changing the gene expression related to ABC transporters and stress,which may enrich the understanding of the toxicity mechanism of PYR in aquatic organisms and provide reference data for aquatic ecological risk assessments.展开更多
Oxidative stress has been associated with a number of physiological problems in swine,including reduced production efficiency.Recently,although there has been increased research into regulatory mechanisms and antioxid...Oxidative stress has been associated with a number of physiological problems in swine,including reduced production efficiency.Recently,although there has been increased research into regulatory mechanisms and antioxidant strategies in relation to oxidative stress-induced pig production,it remains so far largely unsuccessful to develop accurate models and nutritional strategies for specific oxidative stress factors.Here,we discuss the dose and dose intensity of the causes of oxidative stress involving physiological,environmental and dietary factors,recent research models and the antioxidant strategies to provide theoretical guidance for future oxidative stress research in swine.展开更多
Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic fram...Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic framework(CoNi-MOF)is fabricated to disperse N-hydroxyphthalimide(NHPI),in which the whole catalyst provides plentiful synergic catalytic effect to improve the performance of oxidative desulfurization(ODS).As a bimetallic MOF,the second metal Ni doping results in the flower-like morphology and the modification of electronic properties,which ensure the exposure of NHPI and strengthen the synergistic effect of the overall catalyst.Compared with the monometallic Co-MOF and naked NHPI,the NHPI@CoNi-MOF triggers the efficient activation of molecular oxygen and improves the ODS performance without an initiator.The sulfur removal of dibenzothiophene-based model oil reaches 96.4%over the NHPI@CoNi-MOF catalyst in 8 h of reaction.Furthermore,the catalytic product of this aerobic ODS reaction is sulfone,which is adsorbed on the catalyst surface due to the difference in polarity.This work provides new insight and strategy for the design of a strong synergic catalytic effect between NHPI and bimetallic supports toward high-activity aerobic ODS materials.展开更多
Objective:To explore whether thrombopoietin can exert a protective effect against doxorubicin-induced cardiotoxicity by modulating the sirtuin 1(SIRT1)signaling pathway.Methods:H9c2 cell viability was determined by CC...Objective:To explore whether thrombopoietin can exert a protective effect against doxorubicin-induced cardiotoxicity by modulating the sirtuin 1(SIRT1)signaling pathway.Methods:H9c2 cell viability was determined by CCK-8 and cardiomyocyte apoptosis was detected by TUNEL assay.The protein expressions of SIRT1 and p38 MAPK were measured by Western blot.RT-qPCR was also used to determine SIRT1 mRNA expression.In addition,intracellular reactive oxygen species levels and antioxidant enzyme activities were evaluated.Results:Thrombopoietin treatment reversed doxorubicin-induced decline in H9c2 cell viability.It also increased SIRT1 and decreased p-p38 MAPK protein expressions.In addition,thrombopoietin significantly attenuated doxorubicin-induced apoptosis and oxidative stress,and enhanced antioxidant enzyme activities.However,silencing SIRT1 abrogated the protective effects of thrombopoietin,as evidenced by reduced cell viability and increased oxidative stress and reactive oxygen species levels.Conclusions:Thrombopoietin alleviates doxorubicin-induced cardiomyocyte injury by reducing oxidative stress and apoptosis via the SIRT1/p38 MAPK pathway.However,its protective effects need to be further verified in animal tests.展开更多
Mitochondrial disorders are phenotypically varied, with serious clinical repercussions. Among them, there is the deficiency of combined oxidative phosphorylation of type 20, which occurs due to a defect in the VARS2 g...Mitochondrial disorders are phenotypically varied, with serious clinical repercussions. Among them, there is the deficiency of combined oxidative phosphorylation of type 20, which occurs due to a defect in the VARS2 gene. This article presents a case of a 2-year-old female with progressive myoclonic epilepsy and psychomotor regression, with refractoriness to multiple anticonvulsants. The diagnosis was only made after the examination was carried out. Therefore, this article highlights the aspects of this rare disease and the importance of the exome for the diagnosis of rare conditions.展开更多
Chemical looping oxidative dehydrogenation (CL-ODH) is an economically promising method for convertingethane into higher value-added ethylene utilizing lattice oxygen in redox catalysts, also known as oxygen carriers....Chemical looping oxidative dehydrogenation (CL-ODH) is an economically promising method for convertingethane into higher value-added ethylene utilizing lattice oxygen in redox catalysts, also known as oxygen carriers. Inthis study, perovskite-type oxide SrCoO_(3-δ) and B-site Mn ion-doped oxygen carriers (SrCo_(1-x)MnxO_(3-δ), x=0.1, 0.2, 0.3)were prepared and tested for the CL-ODH of ethane. The oxygen-deficient perovskite SrCoO_(3-δ) exhibited high ethyleneselectivity of up to 96.7% due to its unique oxygen vacancies and lattice oxygen migration rates. However, its low ethyleneyield limits its application in the CL-ODH of ethane. Mn doping promoted the reducibility of SrCoO_(3-δ) oxygen carriers,thereby improving ethane conversion and ethylene yield, as demonstrated by characterization and evaluation experiments.X-ray diffraction results confirmed the doping of Mn into the lattice of SrCoO_(3-δ), while X-ray photoelectron spectroscopy(XPS) indicated an increase in lattice oxygen ratio upon incorporation of Mn into the SrCoO_(3-δ) lattice. Additionally, H2temperature-programmed reduction (H2-TPR) tests revealed more peaks at lower temperature reduction zones and a declinein peak positions at higher temperatures. Among the four tested oxygen carriers, SrCo0.8Mn0.2O_(3-δ) exhibited satisfactoryperformance with an ethylene yield of 50% at 710 °C and good stability over 20 redox cycles. The synergistic effect of Mnplays a key role in increasing ethylene yields of SrCoO_(3-δ) oxygen carriers. Accordingly, SrCo0.8Mn0.2O_(3-δ) shows promisingpotential for the efficient production of ethylene from ethane via CL-ODH.展开更多
The aim of this experiment was to investigate the ameliorative effect and molecular mechanism of tilapia head glycolipid(TH-GL)on indomethacin(IDM)-induced gastric ulcer in male Sprague Dawley(SD)rats.The gastric ulce...The aim of this experiment was to investigate the ameliorative effect and molecular mechanism of tilapia head glycolipid(TH-GL)on indomethacin(IDM)-induced gastric ulcer in male Sprague Dawley(SD)rats.The gastric ulcer model was established by oral administration of 30mgkg^(-1) IDM after 7 days of TH-GL or omeprazole(OME)administration in rats.Then the macroscopic gastric injury symptoms,gastric mucosa protective factor cyclooxygenase 1(COX-1),cyclooxygenase 2(COX-2),prostaglandin E_(2)(PGE_(2)),the levels of oxidative stress,and inflammatory cytokine expression levels in the rats were analyzed.The experimental results showed that multiple ulcers appeared on the gastric surface of the rats in the model group.Compared to the model group,TH-GL significantly alleviated gastric ulcers and reduced the gastric damage index in rats.In addition,TH-GL significantly promoted the expression of constitutive enzyme COX-1 while inhibited the expression of inducible enzyme COX-2,and make PGE2 maintain at normal levels.TH-GL also inhibited oxidative stress and inflammatory responses,increased superoxide dismutase(SOD)activity and glutathione(GSH)content,decreased the level of malondialdehyde(MDA)and the content of pro-inflammatory factor.In conclusion,these results suggested that TH-GL could maintain the expression levels of COX-1 and PGE2 while inhibit the expression of COX-2 in the gastric of rat and then prevent IDM-induced gastric ulcer,which may be related to the regulation of oxidative stress and inflammatory response.Therefore,TH-GL might be a new option for the prevention of gastric diseases induced by IDM.展开更多
Parkinson’s disease(PD)is a neurodegenerative condition that results in dyskinesia,with oxidative stress playing a pivotal role in its progression.Antioxidant peptides may thus present therapeutic potential for PD.In...Parkinson’s disease(PD)is a neurodegenerative condition that results in dyskinesia,with oxidative stress playing a pivotal role in its progression.Antioxidant peptides may thus present therapeutic potential for PD.In this study,a novel cathelicidin peptide(Cath-KP;GCSGRFCNLF NNRRPGRLTLIHRPGGDKRTSTGLIYV)was identified from the skin of the Asiatic painted frog(Kaloula pulchra).Structural analysis using circular dichroism and homology modeling revealed a uniqueαββconformation for Cath-KP.In vitro experiments,including free radical scavenging and ferric-reducing antioxidant analyses,confirmed its antioxidant properties.Using the 1-methyl-4-phenylpyridinium ion(MPP^(+))-induced dopamine cell line and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced PD mice,Cath-KP was found to penetrate cells and reach deep brain tissues,resulting in improved MPP^(+)-induced cell viability and reduced oxidative stress-induced damage by promoting antioxidant enzyme expression and alleviating mitochondrial and intracellular reactive oxygen species accumulation through Sirtuin-1(Sirt1)/Nuclear factor erythroid 2-related factor 2(Nrf2)pathway activation.Both focal adhesion kinase(FAK)and p38 were also identified as regulatory elements.In the MPTP-induced PD mice,Cath-KP administration increased the number of tyrosine hydroxylase(TH)-positive neurons,restored TH content,and ameliorated dyskinesia.To the best of our knowledge,this study is the first to report on a cathelicidin peptide demonstrating potent antioxidant and neuroprotective properties in a PD model by targeting oxidative stress.These findings expand the known functions of cathelicidins,and hold promise for the development of therapeutic agents for PD.展开更多
In this editorial,we commented on the article published in the recent issue of the World Journal of Diabetes.Diabetic cardiomyopathy(DCM)is characterized by myocardial fibrosis,ventricular hypertrophy and diastolic dy...In this editorial,we commented on the article published in the recent issue of the World Journal of Diabetes.Diabetic cardiomyopathy(DCM)is characterized by myocardial fibrosis,ventricular hypertrophy and diastolic dysfunction in diabetic patients,which can cause heart failure and threaten the life of patients.The pathogenesis of DCM has not been fully clarified,and it may involve oxidative stress,inflammatory stimulation,apoptosis,and autophagy.There is lack of effective therapies for DCM in the clinical practice.Statins have been widely used in the clinical practice for years mainly to reduce cholesterol and stabilize arterial plaques,and exhibit definite cardiovascular protective effects.Studies have shown that statins also have anti-inflammatory and antioxidant effects.We were particularly concerned about the recent findings that atorvastatin alleviated myocardial fibrosis in db/db mice by regulating the antioxidant stress and antiinflammatory effects of macrophage polarization on diabetic myocardium,and thereby improving DCM.展开更多
Purpose: The oxidative stress (OS) hypothesis of overtraining syndrome argues that increased production of free radicals through exercise cause muscle fatigue and damage resulting in lower athletic performance. Severa...Purpose: The oxidative stress (OS) hypothesis of overtraining syndrome argues that increased production of free radicals through exercise cause muscle fatigue and damage resulting in lower athletic performance. Several studies have investigated OS immediately before and after exercise bouts in a training macrocycle. Our study aimed to compare OS of endurance athletes between a competition macrocycle and the immediate post-season recovery macrocycle. In addition, we aimed to identify athletes who experienced an unexplainable drop in athletic performance during the competition season in order to compare their OS to those who experienced no drop in performance. Methods: Fifteen members of the University of Alaska Fairbanks cross country ski team volunteered for this study. Blood samples were taken in early February (“mid-season”) and late April (“post-season”). Participants completed questionnaires regarding physical activity and athletic performance at the time of the blood draws. Plasma was analyzed for 4-hydroxynonenal<sup> </sup>(HNE), nitrotyrosine,<sup> </sup>nitric oxide (NOX), and superoxide dismutase (SOD). Significance was determined by Wilcoxon and Mann-Whitney tests. Results: Participants displayed significantly higher (p Conclusion: Signs of oxidative stress and mitigation during the post-season recovery macrocycle were higher in athletes who reported experiencing a drop in athletic performance during the competition season macrocycle.展开更多
基金This work was supported financially by Korea Environment Industry&Technology Institute through Project to make multi-ministerial national biological research resources more advanced program,funded by Korea Ministry of Environment(grant number RS-2023-00230403).
文摘Objective:To evaluate the effect of the ethyl acetate fraction derived from Sargassum pallidum extract against particulate matter(PM)-induced oxidative stress and inflammation in HaCaT cells and zebrafish.Methods:HaCaT cells and zebrafish were used to evaluate the protective effects of the ethyl acetate fraction of Sargassum pallidum extract against PM-induced oxidative stress and inflammation.The production of nitric oxide(NO),intracellular ROS,prostaglandin E_(2)(PGE_(2)),and pro-inflammatory cytokines,and the expression levels of COX-2,iNOS,and NF-κB were evaluated in PM-induced HaCaT cells.Furthermore,the levels of ROS,NO,and lipid peroxidation were assessed in the PM-exposed zebrafish model.Results:The ethyl acetate fraction of Sargassum pallidum extract significantly decreased the production of NO,intracellular ROS,and PGE_(2) in PM-induced HaCaT cells.In addition,the fraction markedly suppressed the levels of pro-inflammatory cytokines and inhibited the expression levels of COX-2,iNOS,and NF-κB.Furthermore,it displayed remarkable protective effects against PM-induced inflammatory response and oxidative stress,represented by the reduction of NO,ROS,and lipid peroxidation in zebrafish.Conclusions:The ethyl acetate fraction of Sargassum pallidum extract exhibits a protective effect against PM-induced oxidative stress and inflammation both in vitro and in vivo and has the potential as a candidate for the development of pharmaceutical and cosmeceutical products.
基金supported by the National Natural Science Foundation of China,No.81771250(to XC)the Natural Science Foundation of Fujian Province,Nos.2020J011059(to XC),2020R1011004(to YW),2021J01374(to XZ)+1 种基金Medical Innovation Project of Fujian Province,No.2021 CXB002(to XC)Fujian Research and Training Grants for Young and Middle-aged Leaders in Healthcare(to XC)。
文摘Accumulating evidence suggests that oxidative stress and the Wnt/β-catenin pathway participate in stroke-induced disruption of the blood-brain barrier.However,the potential links between them following ischemic stroke remain largely unknown.The present study found that cerebral ischemia leads to oxidative stress and repression of the Wnt/β-catenin pathway.Meanwhile,Wnt/β-catenin pathway activation by the pharmacological inhibito r,TWS119,relieved oxidative stress,increased the levels of cytochrome P4501B1(CYP1B1)and tight junction-associated proteins(zonula occludens-1[ZO-1],occludin and claudin-5),as well as brain microvascular density in cerebral ischemia rats.Moreove r,rat brain microvascular endothelial cells that underwent oxygen glucose deprivation/reoxygenation displayed intense oxidative stress,suppression of the Wnt/β-catenin pathway,aggravated cell apoptosis,downregulated CYP1B1and tight junction protein levels,and inhibited cell prolife ration and migration.Overexpression ofβ-catenin or knockdown ofβ-catenin and CYP1B1 genes in rat brain mic rovascular endothelial cells at least partly ameliorated or exacerbated these effects,respectively.In addition,small interfering RNA-mediatedβ-catenin silencing decreased CYP1B1 expression,whereas CYP1B1 knoc kdown did not change the levels of glycogen synthase kinase 3β,Wnt-3a,andβ-catenin proteins in rat brain microvascular endothelial cells after oxygen glucose deprivatio n/reoxygenation.Thus,the data suggest that CYP1B1 can be regulated by Wnt/β-catenin signaling,and activation of the Wnt/β-catenin/CYP1B1 pathway contributes to alleviation of oxidative stress,increased tight junction levels,and protection of the blood-brain barrier against ischemia/hypoxia-induced injury.
文摘Inflammatory markers and mediators that affect the development of cardiovascular diseases have been the focus of recent scientific work.Thus,the purpose of this editorial is to promote a critical debate about the article titled“Nε-carboxymethyl-lysine and inflammatory cytokines,markers,and mediators of coronary artery disease progression in diabetes”,published in the World Journal of Diabetes in 2024.This work directs us to reflect on the role of advanced glycation end products,which are pro-inflammatory products arising from the metabolism of fatty acids and sugars whose main marker in tissues is Nε-carboxymethyllysine(NML).Recent studies have linked high levels of pro-inflammatory agents with the development of coronary artery disease(CAD),especially tumor necrosis factor alpha,interleukins,and C-reactive protein.These inflammatory agents increase the production of reactive oxygen species(ROS),of which people with diabetes are known to have an increased production.The increase in ROS promotes lipid peroxidation,which causes damage to myocytes,promoting myocardial damage.Furthermore,oxidative stress induces the binding of NML to its receptor RAGE,which in turn activates the nuclear factor-kB,and consequently,inflammatory cytokines.These inflammatory cytokines induce endothelial dysfunction,with increased expression of adhesion molecules,changes in endothelial permeability and changes in the expression of nitric oxide.In this sense,the therapeutic use of monoclonal antibodies(inflammatory reducers such as statins and sodium-glucose transport inhibitors)has demonstrated positive results in the regression of atherogenic plaques and consequently CAD.On the other hand,many studies have demonstrated a relationship between mitochondrial dynamics,diabetes,and cardiovascular diseases.This link occurs since ROS have their origin in the imbalance in glucose metabolism that occurs in the mitochondrial matrix,and this imbalance can have its origin in inadequate diet as well as some pathologies.Photobiomodulation(PBM)has recently been considered a possible therapeutic agent for cardiovascular diseases due to its effects on mitochondrial dynamics and oxidative stress.In this sense,therapies such as PBM that act on pro-inflammatory mediators and mitochondrial modulation could benefit those with cardiovascular diseases.
基金supported by the National Natural Science Foundation of China,Nos.LY20H090018(to XL)and LY20H060008(to HS).
文摘Previous studies have shown that Biochanin A,a flavonoid compound with estrogenic effects,can serve as a neuroprotective agent in the context of cerebral ischemia/reperfusion injury;howeve r,its effect on spinal cord injury is still unclea r. In this study,a rat model of spinal cord injury was established using the heavy o bject impact method,and the rats were then treated with Biochanin A(40 mg/kg) via intrape ritoneal injection for 14 consecutive days.The res ults showed that Biochanin A effectively alleviated spinal cord neuronal injury and spinal co rd tissue injury,reduced inflammation and oxidative stress in spinal cord neuro ns,and reduced apoptosis and pyroptosis.In addition,Biochanin A inhibited the expression of inflammasome-related proteins(ASC,NLRP3,and GSDMD)and the Toll-like receptor 4/nuclear factor-κB pathway,activated the Nrf2/heme oxygenase 1 signaling pathway,and increased the expression of the autophagy markers LC3 Ⅱ,Beclin-1,and P62.Moreove r,the therapeutic effects of Biochanin A on early post-s pinal cord injury were similar to those of methylprednisolone.These findings suggest that Biochanin A protected neurons in the injured spinal cord through the Toll-like receptor 4/nuclear factor κB and Nrf2/heme oxygenase 1 signaling pathways.These findings suggest that Biochanin A can alleviate post-spinal cord injury at an early stage.
基金Supported by the Natural Science Foundation of China,No.82070856the Science and Technology Development Plan of Shandong Medical and Health Science,No.202102040075+1 种基金Scientific Research Plan of Weifang Health Commission,No.WFWSJK-2022-010 and No.WFWSJK-2022-008Weifang Science and Technology Development Plan,No.2021YX071 and No.2021YX070.
文摘BACKGROUND Type 2 diabetes mellitus(T2DM)is often accompanied by impaired glucose utilization in the brain,leading to oxidative stress,neuronal cell injury and inflammation.Previous studies have shown that duodenal jejunal bypass(DJB)surgery significantly improves brain glucose metabolism in T2DM rats,the role and the metabolism of DJB in improving brain oxidative stress and inflammation condition in T2DM rats remain unclear.AIM To investigate the role and metabolism of DJB in improving hypothalamic oxidative stress and inflammation condition in T2DM rats.METHODS A T2DM rat model was induced via a high-glucose and high-fat diet,combined with a low-dose streptozotocin injection.T2DM rats were divided into DJB operation and Sham operation groups.DJB surgical intervention was carried out on T2DM rats.The differential expression of hypothalamic proteins was analyzed using quantitative proteomics analysis.Proteins related to oxidative stress,inflammation,and neuronal injury in the hypothalamus of T2DM rats were analyzed by flow cytometry,quantitative real-time PCR,Western blotting,and immunofluorescence.RESULTS Quantitative proteomics analysis showed significant differences in proteins related to oxidative stress,inflammation,and neuronal injury in the hypothalamus of rats with T2DM-DJB after DJB surgery,compared to the T2DM-Sham groups of rats.Oxidative stress-related proteins(glucagon-like peptide 1 receptor,Nrf2,and HO-1)were significantly increased(P<0.05)in the hypothalamus of rats with T2DM after DJB surgery.DJB surgery significantly reduced(P<0.05)hypothalamic inflammation in T2DM rats by inhibiting the activation of NF-κB and decreasing the expression of interleukin(IL)-1βand IL-6.DJB surgery significantly reduced(P<0.05)the expression of factors related to neuronal injury(glial fibrillary acidic protein and Caspase-3)in the hypothalamus of T2DM rats and upregulated(P<0.05)the expression of neuroprotective factors(C-fos,Ki67,Bcl-2,and BDNF),thereby reducing hypothalamic injury in T2DM rats.CONCLUSION DJB surgery improve oxidative stress and inflammation in the hypothalamus of T2DM rats and reduce neuronal cell injury by activating the glucagon-like peptide 1 receptor-mediated Nrf2/HO-1 signaling pathway.
文摘Vegetable oils are a source of energy, essential fatty acids, antioxidants and fat-soluble vitamins useful for human health care and development. These oils also contribute to organoleptic quality of their products’ derivatives. However, their chemical and physical properties can be modified by the mode of their extraction, storage and distribution. These modifications might negatively affect the nutritional quality of the oils. The goals of this study were to: sample different vegetable oils for cosmetic or dietary use marketed in Cameroon, and verify purity and oxidation states of each kind of oil through determination of its acidity, iodine, peroxide, saponification, refractive indexes and the conformity of the labeling. The carotene content, the level of polar components and specific absorbance were also determined. As the result, six oils namely palm, palm kernel, coconut, black cumin, peanut and shea butter were collected. Apart from labeling, chemicals and physicals parameters analyzed were generally in accordance with the Cameroonian and Codex Alimentarius standard. This study suggests that vegetable oils sampled in the Cameroonian market may not expose consumers to lipid oxidation products generating pathological oxidative stress and inflammation. However, efforts in application of existing standard need to be done as far as labeling are concerned.
基金supported by National Natural Science Foundation of China(No.52301382)the Natural Science Foundation of Hubei Province(No.2022CFB730)Automotive Components Technology of Hubei Collaborative Innovation Project(No.2015XTZX0406)。
文摘Seagoing vessels are responsible for more than 90%of global freight traffic,but meanwhile,emission pollutants(NO_(x)and SO_(x))of seagoing vessels also cause serious air pollution.Nonthermal plasma(NTP)combined with wet scrubbing technology is considered to be a promising technology.In order to improve the oxidation efficiency and energy efficiency of the NTP reactor,the screw and rod inner electrodes of dielectric barrier discharge(DBD)reactor were investigated.To analyze the mechanism,the optical emission spectra(OES)of NTP were measured and numerical calculation was applied.The experiment results show that the NO oxidation removal efficiency of screw electrode is lower than that of rod electrode.However,the SO_(2)removal efficiency of screw electrode is higher.According to the OES experiment and numerical calculation,the electric field intensity of the screw electrode surface is much higher than that of the rod electrode surface,and it is easier to generate N radicals to form NO.For the same energy density condition,the OH radical generation efficiency of the screw electrode reactor is similar to that of the rod electrode,but the gas temperature in the discharge gap is higher.Therefore,the SO2 oxidation efficiency of the thread electrode is higher.This study provides guidance for the optimization of oxidation efficiency and energy consumption of DBD reactor.
基金the Key Laboratory of Marine Resource Chemistry and Food Technology(TUST)the Ministry of Education(No.EMTUST-21-08)the Guilin Science and Technology Project(No.20210225-4)。
文摘Deltamethrin(DEL),a commonly used pyrethroid pesticide,results in higher reactive oxygen species(ROS)levels in aquatic animals,which consequently unbalance the redox state.Phlorizin(PHL)is a flavonoid and a natural product promising to prevent or reduce pesticide-induced oxidative stress.Artemia is a micro-crustacean widely used in marine hatcheries and an experimental aquatic organism for environmental toxicology research.This research aimed to evaluate the toxicity of DEL on Artemia and the antioxidative effect of PHL against the toxicity.Results show that 0.08-mg/mL PHL exerted its antioxidative effects on hatching percentage of the cysts in 24-h incubation and on body length and survival rate of Artemia in 12-d culture.After 12-d culture,12-,24-,and 36-h DEL exposure showed significant drops in SOD,CAT,and GSH-Px enzyme activities,and significant increases in ROS and malondialdehyde(MDA)levels in Artemia(P<0.05).On the contrary,0.08-mg/mL PHL application improved the enzyme activities and decreased the ROS and MDA levels(P<0.05).Moreover,0.08-mg/mL PHL significantly increased mRNA expression levels of Cu/Zn SOD,CAT,GST,HO-1,NQO1,and Nrf2,and decreased mRNA expression level of Keap1 in the DEL-exposed Artemia(P<0.05).Therefore,DEL is toxic to Artemia,while PHL alleviates DEL-induced oxidative damage by possibly regulating the Nrf2signaling pathway.This study provided a theoretical basis for PHL to reduce pesticide-induced toxicity in aquatic animals.
文摘Hearing loss is the third leading cause of human disability.Age-related hearing loss,one type of acquired sensorineural hearing loss,is largely responsible for this escalating global health burden.Noise-induced,ototoxic,and idiopathic sudden sensorineural are other less common types of acquired hearing loss.The etiology of these conditions is complex and multi-fa ctorial involving an interplay of genetic and environmental factors.Oxidative stress has recently been proposed as a likely linking cause in most types of acquired sensorineural hearing loss.Short non-coding RNA sequences known as microRNAs(miRNAs)have increasingly been shown to play a role in cellular hypoxia and oxidative stress responses including promoting an apoptotic response.Sensory hair cell death is a central histopathological finding in sensorineural hearing loss.As these cells do not regenerate in humans,it underlies the irreversibility of human age-related hearing loss.Ovid EMBASE,Ovid MEDLINE,Web of Science Core Collection,and ClinicalTrials.gov databases over the period August 1,2018 to July 31,2023 were searched with"hearing loss,""hypoxamiRs,""hypoxia,""microRNAs,""ischemia,"and"oxidative stress"text words for English language primary study publications or registered clinical trials.Registe red clinical trials known to the senior author we re also assessed.A total of 222studies were thus identified.After excluding duplicates,editorials,retra ctions,secondary research studies,and non-English language articles,39 primary studies and clinical trials underwent full-text screening.This resulted in 11 animal,in vitro,and/or human subject journal articles and 8 registered clinical trial database entries which form the basis of this narrative review.MiRNAs miR-34a and miR-29b levels increase with age in mice.These miRNAs were demonstrated in human neuroblastoma and murine cochlear cell lines to target Sirtuin 1/peroxisome proliferato r-activated receptor gamma coactivator-1-alpha(SIRT1/P GC-1α),SIRT1p53,and SIRT1/hypoxia-inducible factor 1-alpha signaling pathways resulting in increased apoptosis.Furthermore,hypoxia and oxidative stress had a similar adve rse apoptotic effect,which was inhibited by resve ratrol and a myocardial inhibitorassociated transcript,a miR-29b competing endogenous mRNA.Gentamicin reduced miR-182-5p levels and increased cochlear oxidative stress and cell death in mice-an effect that was corrected by inner ear stem cell-derived exosomes.There is ongoing work seeking to determine if these findings can be effectively translated to humans.
文摘Seizures of agrochemical formulations have increased in Brazil and Rio Grande do Sul is among the Brazilian states with the highest number of seizures of these products obtained illicitly. The use of illicit formulations can cause significant harm to agricultural production, the environment, and non-target species. This study evaluated the cytotoxicity and oxidative stress of a seized formulation containing the herbicide imazethapyr (IMZT). Characterization of the herbicide included gas chromatography-mass spectrometry (GC-MS) and thermal analyses (thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC)). Hemolytic and cytotoxicity assays in ZF-L hepatic cells showed IC50 values of 12.75 µg/mL, 3.01 µg/mL, 2.67 µg/mL, and 1.61 µg/mL for erythrocytes, [3(4,5-dimethyl)-2 bromide-5 diphenyl tetrazolium] (MTT), neutral red (NR), and lactate dehydrogenase (LDH) assays, respectively. The median IC50 of 2.84 µg/mL was used in oxidative stress assays, revealing increased reactive oxygen species (ROS) production, reduced total sulfhydryl content, and decreased superoxide dismutase (SOD) and catalase (CAT) activity. This study is the first to report in vitro oxidative stress induced by IMZT in the ZF-L cell line, emphasizing the importance of in vitro assays for assessing the toxic effects of seized agrochemicals on human health and the environment.
基金the Key Scientific Research Projects of Henan Province to College Youth Backbone Teacher(No.2021118)the National Key Research and Development Program of China(No.2021YFE0112000)。
文摘Pyraclostrobin(PYR),a widely used fungicide,has negative effects on fish and algae,but its toxicity in protozoa remains unclear.In this study,the effects of PYR on the growth,oxidative stress,and gene expression related to stress and ATP-binding cassette(ABC)transporters in Tetrahymena thermophila were investigated.The result showed that the 96-h IC_(50)of PYR against T.thermophila was 17.2 mg/L.Moreover,PYR inhibited the growth of T.thermophila in concentration-or time-dependent manner.A morphological study revealed that the shape and size of T.thermophila changed,and damage of cell membrane surface was observed by scanning electron microscopy after 96 h of PYR exposure.The activities of superoxide dismutase(SOD)and catalase(CAT)increased throughout the experiment.In contrast,the glutathione(GSH)content was increased at 24 h and 48 h of exposure and decreased at 96 h.Moreover,a significant increase in malondialdehyde(MDA)level was observed in T.thermophila after96 h of exposure.Furthermore,PYR upregulated the HSP703,HSP705,GPx2,and ABAC15 gene expression in the 0.1–5-mg/L groups and downregulated the HSP704,HSP90,TGR,and ABCC52 mRNA levels at 96 h of exposure.These results suggest that PYR may exert adverse effects on T.thermophila by inducing oxidative stress and changing the gene expression related to ABC transporters and stress,which may enrich the understanding of the toxicity mechanism of PYR in aquatic organisms and provide reference data for aquatic ecological risk assessments.
基金supported by Guangzhou Science and Technology Planning Project(2023A04J0131)Special fund for scientific innovation strategyconstruction of high level Academy of Agriculture Science(R2020PY-JG009,R2022PY-QY007,202106TD)+2 种基金China Agriculture Research System-CARS-35the Project of Swine Innovation Team in Guangdong Modern Agricultural Research System(2022KJ126)Special Fund for Rural Revitalization Strategy of Guangdong(2023TS-3),China。
文摘Oxidative stress has been associated with a number of physiological problems in swine,including reduced production efficiency.Recently,although there has been increased research into regulatory mechanisms and antioxidant strategies in relation to oxidative stress-induced pig production,it remains so far largely unsuccessful to develop accurate models and nutritional strategies for specific oxidative stress factors.Here,we discuss the dose and dose intensity of the causes of oxidative stress involving physiological,environmental and dietary factors,recent research models and the antioxidant strategies to provide theoretical guidance for future oxidative stress research in swine.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.21978119,22202088)Key Research and Development Plan of Hainan Province(ZDYF2022SHFZ285)Jiangsu Funding Program for Excellent Postdoctoral Talent(2022ZB636)。
文摘Synergic catalytic effect between active sites and supports greatly determines the catalytic activity for the aerobic oxidative desulfurization of fuel oils.In this work,Ni-doped Co-based bimetallic metal-organic framework(CoNi-MOF)is fabricated to disperse N-hydroxyphthalimide(NHPI),in which the whole catalyst provides plentiful synergic catalytic effect to improve the performance of oxidative desulfurization(ODS).As a bimetallic MOF,the second metal Ni doping results in the flower-like morphology and the modification of electronic properties,which ensure the exposure of NHPI and strengthen the synergistic effect of the overall catalyst.Compared with the monometallic Co-MOF and naked NHPI,the NHPI@CoNi-MOF triggers the efficient activation of molecular oxygen and improves the ODS performance without an initiator.The sulfur removal of dibenzothiophene-based model oil reaches 96.4%over the NHPI@CoNi-MOF catalyst in 8 h of reaction.Furthermore,the catalytic product of this aerobic ODS reaction is sulfone,which is adsorbed on the catalyst surface due to the difference in polarity.This work provides new insight and strategy for the design of a strong synergic catalytic effect between NHPI and bimetallic supports toward high-activity aerobic ODS materials.
基金supported by the Natural Science Foundation of Hainan Province High-level Talent Project(grant number 820RC644)Innovative Research Projects for Postgraduate Students at Hainan Medical University(grant number HYYS2022B08).
文摘Objective:To explore whether thrombopoietin can exert a protective effect against doxorubicin-induced cardiotoxicity by modulating the sirtuin 1(SIRT1)signaling pathway.Methods:H9c2 cell viability was determined by CCK-8 and cardiomyocyte apoptosis was detected by TUNEL assay.The protein expressions of SIRT1 and p38 MAPK were measured by Western blot.RT-qPCR was also used to determine SIRT1 mRNA expression.In addition,intracellular reactive oxygen species levels and antioxidant enzyme activities were evaluated.Results:Thrombopoietin treatment reversed doxorubicin-induced decline in H9c2 cell viability.It also increased SIRT1 and decreased p-p38 MAPK protein expressions.In addition,thrombopoietin significantly attenuated doxorubicin-induced apoptosis and oxidative stress,and enhanced antioxidant enzyme activities.However,silencing SIRT1 abrogated the protective effects of thrombopoietin,as evidenced by reduced cell viability and increased oxidative stress and reactive oxygen species levels.Conclusions:Thrombopoietin alleviates doxorubicin-induced cardiomyocyte injury by reducing oxidative stress and apoptosis via the SIRT1/p38 MAPK pathway.However,its protective effects need to be further verified in animal tests.
文摘Mitochondrial disorders are phenotypically varied, with serious clinical repercussions. Among them, there is the deficiency of combined oxidative phosphorylation of type 20, which occurs due to a defect in the VARS2 gene. This article presents a case of a 2-year-old female with progressive myoclonic epilepsy and psychomotor regression, with refractoriness to multiple anticonvulsants. The diagnosis was only made after the examination was carried out. Therefore, this article highlights the aspects of this rare disease and the importance of the exome for the diagnosis of rare conditions.
基金the SINOPEC Research and Development Project(No.JR22094).
文摘Chemical looping oxidative dehydrogenation (CL-ODH) is an economically promising method for convertingethane into higher value-added ethylene utilizing lattice oxygen in redox catalysts, also known as oxygen carriers. Inthis study, perovskite-type oxide SrCoO_(3-δ) and B-site Mn ion-doped oxygen carriers (SrCo_(1-x)MnxO_(3-δ), x=0.1, 0.2, 0.3)were prepared and tested for the CL-ODH of ethane. The oxygen-deficient perovskite SrCoO_(3-δ) exhibited high ethyleneselectivity of up to 96.7% due to its unique oxygen vacancies and lattice oxygen migration rates. However, its low ethyleneyield limits its application in the CL-ODH of ethane. Mn doping promoted the reducibility of SrCoO_(3-δ) oxygen carriers,thereby improving ethane conversion and ethylene yield, as demonstrated by characterization and evaluation experiments.X-ray diffraction results confirmed the doping of Mn into the lattice of SrCoO_(3-δ), while X-ray photoelectron spectroscopy(XPS) indicated an increase in lattice oxygen ratio upon incorporation of Mn into the SrCoO_(3-δ) lattice. Additionally, H2temperature-programmed reduction (H2-TPR) tests revealed more peaks at lower temperature reduction zones and a declinein peak positions at higher temperatures. Among the four tested oxygen carriers, SrCo0.8Mn0.2O_(3-δ) exhibited satisfactoryperformance with an ethylene yield of 50% at 710 °C and good stability over 20 redox cycles. The synergistic effect of Mnplays a key role in increasing ethylene yields of SrCoO_(3-δ) oxygen carriers. Accordingly, SrCo0.8Mn0.2O_(3-δ) shows promisingpotential for the efficient production of ethylene from ethane via CL-ODH.
基金supported by the National Key R&D Pro-grams of China(No.2018YFD0901103)the Hainan Provincial Natural Science Foundation of China(No.2019 RC093).
文摘The aim of this experiment was to investigate the ameliorative effect and molecular mechanism of tilapia head glycolipid(TH-GL)on indomethacin(IDM)-induced gastric ulcer in male Sprague Dawley(SD)rats.The gastric ulcer model was established by oral administration of 30mgkg^(-1) IDM after 7 days of TH-GL or omeprazole(OME)administration in rats.Then the macroscopic gastric injury symptoms,gastric mucosa protective factor cyclooxygenase 1(COX-1),cyclooxygenase 2(COX-2),prostaglandin E_(2)(PGE_(2)),the levels of oxidative stress,and inflammatory cytokine expression levels in the rats were analyzed.The experimental results showed that multiple ulcers appeared on the gastric surface of the rats in the model group.Compared to the model group,TH-GL significantly alleviated gastric ulcers and reduced the gastric damage index in rats.In addition,TH-GL significantly promoted the expression of constitutive enzyme COX-1 while inhibited the expression of inducible enzyme COX-2,and make PGE2 maintain at normal levels.TH-GL also inhibited oxidative stress and inflammatory responses,increased superoxide dismutase(SOD)activity and glutathione(GSH)content,decreased the level of malondialdehyde(MDA)and the content of pro-inflammatory factor.In conclusion,these results suggested that TH-GL could maintain the expression levels of COX-1 and PGE2 while inhibit the expression of COX-2 in the gastric of rat and then prevent IDM-induced gastric ulcer,which may be related to the regulation of oxidative stress and inflammatory response.Therefore,TH-GL might be a new option for the prevention of gastric diseases induced by IDM.
基金supported by the National Natural Science Foundation of China(31772476 and 31911530077 to X.X.,81870991 and U1603281 to S.Q.)Guangdong Basic and Applied Basic Research Foundation(2023A1515010914 to X.X.)Natural Science Foundation of Guangdong Province(2022A1515010352 to S.Q.)。
文摘Parkinson’s disease(PD)is a neurodegenerative condition that results in dyskinesia,with oxidative stress playing a pivotal role in its progression.Antioxidant peptides may thus present therapeutic potential for PD.In this study,a novel cathelicidin peptide(Cath-KP;GCSGRFCNLF NNRRPGRLTLIHRPGGDKRTSTGLIYV)was identified from the skin of the Asiatic painted frog(Kaloula pulchra).Structural analysis using circular dichroism and homology modeling revealed a uniqueαββconformation for Cath-KP.In vitro experiments,including free radical scavenging and ferric-reducing antioxidant analyses,confirmed its antioxidant properties.Using the 1-methyl-4-phenylpyridinium ion(MPP^(+))-induced dopamine cell line and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced PD mice,Cath-KP was found to penetrate cells and reach deep brain tissues,resulting in improved MPP^(+)-induced cell viability and reduced oxidative stress-induced damage by promoting antioxidant enzyme expression and alleviating mitochondrial and intracellular reactive oxygen species accumulation through Sirtuin-1(Sirt1)/Nuclear factor erythroid 2-related factor 2(Nrf2)pathway activation.Both focal adhesion kinase(FAK)and p38 were also identified as regulatory elements.In the MPTP-induced PD mice,Cath-KP administration increased the number of tyrosine hydroxylase(TH)-positive neurons,restored TH content,and ameliorated dyskinesia.To the best of our knowledge,this study is the first to report on a cathelicidin peptide demonstrating potent antioxidant and neuroprotective properties in a PD model by targeting oxidative stress.These findings expand the known functions of cathelicidins,and hold promise for the development of therapeutic agents for PD.
基金Supported by National Natural Science Foundation of China,No.82000792General project of Chongqing Natural Science Foundation,No.cstc2020jcyj-msxm0409.
文摘In this editorial,we commented on the article published in the recent issue of the World Journal of Diabetes.Diabetic cardiomyopathy(DCM)is characterized by myocardial fibrosis,ventricular hypertrophy and diastolic dysfunction in diabetic patients,which can cause heart failure and threaten the life of patients.The pathogenesis of DCM has not been fully clarified,and it may involve oxidative stress,inflammatory stimulation,apoptosis,and autophagy.There is lack of effective therapies for DCM in the clinical practice.Statins have been widely used in the clinical practice for years mainly to reduce cholesterol and stabilize arterial plaques,and exhibit definite cardiovascular protective effects.Studies have shown that statins also have anti-inflammatory and antioxidant effects.We were particularly concerned about the recent findings that atorvastatin alleviated myocardial fibrosis in db/db mice by regulating the antioxidant stress and antiinflammatory effects of macrophage polarization on diabetic myocardium,and thereby improving DCM.
文摘Purpose: The oxidative stress (OS) hypothesis of overtraining syndrome argues that increased production of free radicals through exercise cause muscle fatigue and damage resulting in lower athletic performance. Several studies have investigated OS immediately before and after exercise bouts in a training macrocycle. Our study aimed to compare OS of endurance athletes between a competition macrocycle and the immediate post-season recovery macrocycle. In addition, we aimed to identify athletes who experienced an unexplainable drop in athletic performance during the competition season in order to compare their OS to those who experienced no drop in performance. Methods: Fifteen members of the University of Alaska Fairbanks cross country ski team volunteered for this study. Blood samples were taken in early February (“mid-season”) and late April (“post-season”). Participants completed questionnaires regarding physical activity and athletic performance at the time of the blood draws. Plasma was analyzed for 4-hydroxynonenal<sup> </sup>(HNE), nitrotyrosine,<sup> </sup>nitric oxide (NOX), and superoxide dismutase (SOD). Significance was determined by Wilcoxon and Mann-Whitney tests. Results: Participants displayed significantly higher (p Conclusion: Signs of oxidative stress and mitigation during the post-season recovery macrocycle were higher in athletes who reported experiencing a drop in athletic performance during the competition season macrocycle.