Electrospun nanofibers of a polyaniline(PANi)/(+)-camphor-10-sulfonic acid(HCSA)/poly(ethylene oxide)(PEO)composite doped with different variants of graphene oxide(GO)were fabricated and evaluated as chemiresistor gas...Electrospun nanofibers of a polyaniline(PANi)/(+)-camphor-10-sulfonic acid(HCSA)/poly(ethylene oxide)(PEO)composite doped with different variants of graphene oxide(GO)were fabricated and evaluated as chemiresistor gas sensors operating at room temperature.A new strategy for enhancing PANi/PEO gas sensor performance is demonstrated using GO dopants reduced via thermal(trGO)or chemical(crGO)routes.By varying the chemical reduction duration(6 h,crGO-6 or 24 h,crGO-24),tunable enhancement of sensor response was achieved.Upon exposure to short-chain aliphatic alcohol vapors,the partially reduced crGO-6 dopant exhibited higher response than GO and crGO-24,suggesting that the dopant enhances sensor performance via increased electrical conductivity over neat GO,and enhanced hydrogen bonding capability over the further-reduced crGO-24 variant.Sensor arrays consisting of PANi/PEO doped with trGO,crGO-6 or crGO-24 moieties successfully identified methanol,ethanol,and 1-propanol vapors using principal component analysis(PCA).展开更多
To further improve the oxidation resistance of polymer derived ceramic(PDC)composites in harsh environments,Cf/SiC/SiHfBOC composites were prepared by chemical vapor infiltration(CVI)and precursor impregnation pyrolys...To further improve the oxidation resistance of polymer derived ceramic(PDC)composites in harsh environments,Cf/SiC/SiHfBOC composites were prepared by chemical vapor infiltration(CVI)and precursor impregnation pyrolysis(PIP)methods.The weight retention change,mechanical properties,and microstructure of C/SiC/SiHfBOC before and after oxidation in air were studied in details.Microscopic analyses showed that only the interface between the ceramics and fibers was oxidized to some extent,and hafnium had been enriched on the composite surface after oxidizing at different temperature.The main oxidation products of Cf/SiC/SiHfBOC composites were Hf0_(2)and HfSi04 after oxidation at 1500℃for 60 min.Moreover,the weight retention ratio and compressive strength of the Cf/SiC/SiHfBOC composites are 83.97%and 23.88±3.11 MPa,respectively.It indicates that the Cf/SiC/SiHfBOC composites should be promising to be used for a short time in the oxidation environment at 1500℃.展开更多
基金The authors would like to acknowledge financial support from United States NSF(CHE-1413449).
文摘Electrospun nanofibers of a polyaniline(PANi)/(+)-camphor-10-sulfonic acid(HCSA)/poly(ethylene oxide)(PEO)composite doped with different variants of graphene oxide(GO)were fabricated and evaluated as chemiresistor gas sensors operating at room temperature.A new strategy for enhancing PANi/PEO gas sensor performance is demonstrated using GO dopants reduced via thermal(trGO)or chemical(crGO)routes.By varying the chemical reduction duration(6 h,crGO-6 or 24 h,crGO-24),tunable enhancement of sensor response was achieved.Upon exposure to short-chain aliphatic alcohol vapors,the partially reduced crGO-6 dopant exhibited higher response than GO and crGO-24,suggesting that the dopant enhances sensor performance via increased electrical conductivity over neat GO,and enhanced hydrogen bonding capability over the further-reduced crGO-24 variant.Sensor arrays consisting of PANi/PEO doped with trGO,crGO-6 or crGO-24 moieties successfully identified methanol,ethanol,and 1-propanol vapors using principal component analysis(PCA).
基金supported by the Key Program of the National Natural Science Foundation of China(No.52032003)the National Natural Science Foundation of China(Nos.519720820 and 51772061)+1 种基金the Science Foundation of the National Key Laboratory of Science and Technology on Advanced Composites in Special Environments(No.6142905202112)the Heilongjiang Provincial Postdoctoral Science Foundation(No.LBH-Z20144).
文摘To further improve the oxidation resistance of polymer derived ceramic(PDC)composites in harsh environments,Cf/SiC/SiHfBOC composites were prepared by chemical vapor infiltration(CVI)and precursor impregnation pyrolysis(PIP)methods.The weight retention change,mechanical properties,and microstructure of C/SiC/SiHfBOC before and after oxidation in air were studied in details.Microscopic analyses showed that only the interface between the ceramics and fibers was oxidized to some extent,and hafnium had been enriched on the composite surface after oxidizing at different temperature.The main oxidation products of Cf/SiC/SiHfBOC composites were Hf0_(2)and HfSi04 after oxidation at 1500℃for 60 min.Moreover,the weight retention ratio and compressive strength of the Cf/SiC/SiHfBOC composites are 83.97%and 23.88±3.11 MPa,respectively.It indicates that the Cf/SiC/SiHfBOC composites should be promising to be used for a short time in the oxidation environment at 1500℃.