期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Complete degradation of high-loaded phenol using tungstate-based ionic liquids with long chain substituent at mild conditions
1
作者 Yingying Yang Honglei Fan +2 位作者 Tianbin Wu Guanying Yang Buxing Han 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期452-458,共7页
Phenol in waste water threatens human health and is difficultly to be decomposed by nature.Efficient degradation of high-loaded phenol in water under mild condition is still a great challenge.Herein,ionic liquids with... Phenol in waste water threatens human health and is difficultly to be decomposed by nature.Efficient degradation of high-loaded phenol in water under mild condition is still a great challenge.Herein,ionic liquids with tungstate anion were designed and prepared.It was found that dodecyltrimethylammonium tungstate could catalyzed degradation of phenol into gases and water thoroughly at 323 k in 8 h.Tungstate anion revealed good catalytic oxidative activity and long carbon chain group connecting with cation of ionic liquids enriched phenol around catalysts,which induced the complete degradation of phenol at mild conditions.Increasing the amounts of hydrogen peroxide benefited to the total degradation of phenol.In addition,the ionic liquid could be reused for its excellent thermal stability.Our work provided a different strategy to treat waste water containing phenol efficiently. 展开更多
关键词 Ionic liquid Oxidative degradation PHENOL TUNGSTATE Hydrogen peroxide
下载PDF
Evaluating two stages of silicone-containing arylene resin oxidation via experiment and molecular simulation
2
作者 Jiangtao Cai Qingfu Huang +4 位作者 Huan Chen Tao Zhang Bo Niu Yayun Zhang Donghui Long 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期189-202,共14页
Silicon-containing aryl acetylene resin(PSA)is a new type of high-temperature resistant resin with excellent oxidation resistance,whereas antioxidant reaction mechanism of PSA resin under ultra-high temperatures still... Silicon-containing aryl acetylene resin(PSA)is a new type of high-temperature resistant resin with excellent oxidation resistance,whereas antioxidant reaction mechanism of PSA resin under ultra-high temperatures still remains unclear.Herein,the oxidation behavior and mechanisms of PSA resin are systematically investigated combining kinetic analysis and Reax FF molecular dynamics(MD)simulations.Thermogravimetric analysis indicates that the oxidation process of PSA resin undergoes two main steps:oxidative mass gain and oxidative degradation.The distributed activation energy model(DAEM)is employed for describing oxidation processes and the best-fit one is obtained using genetic algorithms and differential evolution.DAEM model demonstrates that the oxidative weight gain stage is dominated by two virtual reactants and the oxidative degradation stage consists of three virtual reactants.Correspondingly,the observation of MD reaction pathways indicates that oxygen oxidation of unsaturated structures occurs in the initial stage,which results in the formation of PSA resin oxides.Furthermore,cracked pieces react with O_(2)to generate CO and other chemicals in the second step.The resin matrix's great antioxidation resilience is illustrated by the formation of SiO_(2).The analysis based on MD simulations exhibits an efficient computational proof with the experiments and DAEM methods.Based on the results,a two-stage reaction mechanism is proposed,which provides important theoretical support for the subsequent study of the oxidation behavior of silica-based resins. 展开更多
关键词 PSA resin Oxidative degradation Thermogravimetric analysis DAEM reaction kinetics ReaxFF simulation
下载PDF
Evalution of Thermal Oxidative Degradation of Trimethylol-propane Trioleate by TG/DTA/DSC 被引量:1
3
作者 占稳 DUAN Haitao +2 位作者 LI Xinxiang LI Jian YUAN Chengqing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第2期280-288,共9页
In order to evaluate the thermal oxidation degradation behavior of lubricant with different antioxidants,the thermal kinetics equation based on the anlyses of thermogravimetry(TG),differential thermal analysis(DTA),an... In order to evaluate the thermal oxidation degradation behavior of lubricant with different antioxidants,the thermal kinetics equation based on the anlyses of thermogravimetry(TG),differential thermal analysis(DTA),and differential scanning calorimetry(DSC)was established,respectively,to calculate the activation energy of lubricant thermal-oxidative reaction.The thermal analyses of TG and DTA were employed to determine the thermal decomposition properties of ester oils trimethylolpropane trioleate(TMPTO)with butyl-octyl-diphenylamine/octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoate/amine-phenol combination antioxidant.The activation energy of the lubricating oil adding antioxidant is increased relative to the TMPTO base oil,and the order of activation energy are Ec(93.732 kJ·mol^(-1))>Ed(88.71 kJ·mol^(-1))>Eb(58.41 kJ·mol^(-1))>Ea(46.32 kJ·mol^(-1)).The experimental results show that octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoate in TMPTO has favorable resistance to thermal oxidation and decomposition.The thermal analysis method of DSC accurately reflects the heat exchange of lubricant thermal-oxidative reaction.The order of activation energy is calculated to ED(144.385 kJ·mol^(-1))>EC(110.05 kJ·mol^(-1))>EB(97.187 kJ·mol^(-1))>EA(66.02 kJ·mol^(-1)).It is illustrated that the amine-phenol combination antioxidant has the best thermal oxidation resistance,which is the same as what the oxidation onset temperature effected. 展开更多
关键词 thermal oxidative degradation thermal kinetics ANTIOXIDANTS trimethylolpropane oleate
下载PDF
Efficient oxidative degradation of 2-chlorophenol and 4-chlorophenol over supported CuO-based catalysts 被引量:1
4
作者 Jingjing Li Yang Hu +6 位作者 Wenhui Lu Lei Shi Qi Sun Yonggang Zhou Jianfeng Xu Jian Wang Bizhong Shen 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第5期493-497,共5页
A series of metal oxide catalysts for catalytic oxidative degradation of 2-chlorophenol (2-CP) and 4-chlorophenol (4-CP) were prepared, and the supported CuO catalysts were studied particularly. The supported CuO ... A series of metal oxide catalysts for catalytic oxidative degradation of 2-chlorophenol (2-CP) and 4-chlorophenol (4-CP) were prepared, and the supported CuO catalysts were studied particularly. The supported CuO catalysts were characterized by XRD and NH3-TPD techniques, in which CuO/γ-Al2O3 exhibited high degradation activity. The addition of Na2O or K2O into CuO/γ-Al2O3 improved the oxidative degradation of CPs remarkably, in which Na2O was more efficient than K2O. Over CuO/γ-Al2O3-Na2O, CPs were completely converted and the liberation of the inorganic chloride from 2-CP or 4-CP reached 97% or 100% respectively at 30 ?C for 2 h. The supported CuO catalysts with good dispersion of CuO particles and less acid sites were favorable for the efficient oxidative degradation of CPs. In addition, the initial pH of the reaction solution was found to be an important factor which influenced the catalytic oxidative degradation of CPs and the initial pH of 11.2 and 9.8 was preferred for the oxidative degradation of 2-CP and 4-CP respectively over CuO/γ-Al2O3 catalyst. 展开更多
关键词 CUO/Γ-AL2O3 NA2O K2O CHLOROPHENOL oxidative degradation
下载PDF
Oxidative Degradation of o-Chlorophenol with Contact Glow Discharges in Aqueous Solution 被引量:1
5
作者 高锦章 陈平 +3 位作者 杨武 纳鹏君 刘永军 陆泉芳 《Plasma Science and Technology》 SCIE EI CAS CSCD 2003年第1期1609-1614,共6页
Contact glow discharge electrolysis (CGDE) of o-chlorophenol (2-CP) was investigated under different pH, voltages and initial concentrations. And the mechanism of the oxidation was explored. The results suggested that... Contact glow discharge electrolysis (CGDE) of o-chlorophenol (2-CP) was investigated under different pH, voltages and initial concentrations. And the mechanism of the oxidation was explored. The results suggested that the degradation followed the first order kinetic law; Fe2+ had a remarkable catalytic effect on the removal rate of o-chloropenol. In the presence of Fe2+, 2-CP underwent an exhaustive degradation, from which the major intermediates included o-dihydroxybenze, p-hydroxybenze, p-benzoquione and carboxlic acids. 展开更多
关键词 contact glow discharge electrolysis O-CHLOROPHENOL PLASMA oxidative degradation
下载PDF
Hemin Based Biomimetic Oxidative Degradation of Acid Orange 7 被引量:1
6
作者 Mei Yan Huifang Xie +3 位作者 Qing Zhang Hongxia Qu Jinyou Shen Jinming Kong 《Journal of Materials Science and Chemical Engineering》 2016年第6期26-34,共9页
Degradation of dyes is an important environmental issue. In order to avoid the carcinogenic risks in anaerobic-aerobic biological process for wastewater containing azo dyes, a hemin based biomimetic oxidative degradat... Degradation of dyes is an important environmental issue. In order to avoid the carcinogenic risks in anaerobic-aerobic biological process for wastewater containing azo dyes, a hemin based biomimetic oxidative degradation of azo dyes was developed. Acid orange 7 (AO7) was selected as the model for azo dye and the high efficient degradation was achieved in hemin/H2O2 system at pH 11.0. Degradation could be described by a pseudo-first-order kinetic model. The order of dependence on H2O2 concentration was significantly larger than that of hemin. Coexisting anions sulphate and chloride had little effect on the degradation, but reductive sulphite dramatically inhibited the degradation. The protic solvent 2-prophanol obviously promoted the degradation. Azo chromogenic group was destroyed quickly and some smaller intermediates formed. Active species oxoferryl porphyrin p-cation radical +PFeIV=O generated from heterolytic cleavage of O-O in H2O2 catalyzed by hemin play the main roles in degradation and reaction pathways were proposed. 展开更多
关键词 Biomimetic Oxidative degradation Azo Dyes HEMIN
下载PDF
Oxidative Degradation of 2,4,6-Trichlorophenolin the Presence of Air Ions
7
作者 Hui Min MA Jens WOHLERS +3 位作者 Uwe MEIERHENRICH Axel BERNECKER Vera SULING Wolfram THIEMANN 《Chinese Chemical Letters》 SCIE CAS CSCD 2001年第3期211-214,共4页
2,4,6-trichlorophenol (TCP) was firstly treated with air ions generated by electric discharge, and high dechlorination (53%) was observed after 60 min treatment, indicating that air ions are an efficient dechlorinatio... 2,4,6-trichlorophenol (TCP) was firstly treated with air ions generated by electric discharge, and high dechlorination (53%) was observed after 60 min treatment, indicating that air ions are an efficient dechlorination means and might have a future in the oxidative removal of chlorinated phenols. In addition, a stepwise degradation of TCP, beginning with the formation of a major product 2,6-dichloro-1,4-benzenediol via substitution, is proposed through a detailed analysis of gas chromatography/mass spectrometry. 展开更多
关键词 2 4 6-TRICHLOROPHENOL air ions electric discharge oxidative degradation pollutant treatment
下载PDF
Oxidation Degradation of Aqueous Carbofuran Induced by Low Temperature Plasma
8
作者 蒲陆梅 高锦章 +3 位作者 虎玉森 梁慧光 肖雯 王兴民 《Plasma Science and Technology》 SCIE EI CAS CSCD 2008年第3期348-351,共4页
The oxidative degradation of aqueous carbofuran, a heavily used toxic carbamate insecticide by low temperature plasma, was investigated. The results show that the treatment efficiency increases with the increase in in... The oxidative degradation of aqueous carbofuran, a heavily used toxic carbamate insecticide by low temperature plasma, was investigated. The results show that the treatment efficiency increases with the increase in initial concentration. Raising the treatment temperature and changing the pH value can result in enhanced degradation of carbofuran in solution. The results also show that low temperature plasma treatment can effectively remove chemical oxygen demand (COD) of carbofuran in the solution. 展开更多
关键词 CARBOFURAN low temperature plasma oxidative degradation
下载PDF
OXIDATIVE DEGRADATION OF BILIVERDIN AND BILIRUBIN ESTERS IN PRESENCE OF SILVER NITRATE
9
作者 Jin Shi MA Chang Qi WANG Fang YAN Yong Yong LIU Jin Hua CHEN Institute of Photographic Chemistry,Academia Sinica,Beijing 100012 《Chinese Chemical Letters》 SCIE CAS CSCD 1990年第1期39-40,共2页
Treatment of biliverdin IXα dimethyl ester(2)with silver nitrate in alkaline solution gave two violin-like tripyrrione carbaldehydes,one de- graded at C15-C16,other at C4-C5.Biliverdin IXα(1),bilirubin IXα(3)and it... Treatment of biliverdin IXα dimethyl ester(2)with silver nitrate in alkaline solution gave two violin-like tripyrrione carbaldehydes,one de- graded at C15-C16,other at C4-C5.Biliverdin IXα(1),bilirubin IXα(3)and its dimethyl ester(4)gave the same results. 展开更多
关键词 OXIDATIVE degradation OF BILIVERDIN AND BILIRUBIN ESTERS IN PRESENCE OF SILVER NITRATE ABX
下载PDF
Recent advances in phosphoric acid-based membranes for high-temperature proton exchange membrane fuel cells 被引量:3
10
作者 Zunmin Guo Maria Perez-Page +2 位作者 Jianuo Chen Zhaoqi Ji Stuart M.Holmes 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期393-429,I0010,共38页
High-temperature proton exchange membrane fuel cells(HT-PEMFCs)are pursued worldwide as efficient energy conversion devices.Great efforts have been made in the area of designing and developing phosphoric acid(PA)-base... High-temperature proton exchange membrane fuel cells(HT-PEMFCs)are pursued worldwide as efficient energy conversion devices.Great efforts have been made in the area of designing and developing phosphoric acid(PA)-based proton exchange membrane(PEM)of HT-PEMFCs.This review focuses on recent advances in the limitations of acid-based PEM(acid leaching,oxidative degradation,and mechanical degradation)and the approaches mitigating the membrane degradation.Preparing multilayer or polymers with continuous network,adding hygroscopic inorganic materials,and introducing PA doping sites or covalent interactions with PA can effectively reduce acid leaching.Membrane oxidative degradation can be alleviated by synthesizing crosslinked or branched polymers,and introducing antioxidative groups or highly oxidative stable materials.Crosslinking to get a compact structure,blending with stable polymers and inorganic materials,preparing polymer with high molecular weight,and fabricating the polymer with PA doping sites away from backbones,are recommended to improve the membrane mechanical strength.Also,by comparing the running hours and decay rate,three current approaches,1.crosslinking via thermally curing or polymeric crosslinker,2.incorporating hygroscopic inorganic materials,3.increasing membrane layers or introducing strong basic groups and electron-withdrawing groups,have been concluded to be promising approaches to improve the durability of HT-PEMFCs.The overall aim of this review is to explore the existing degradation challenges and opportunities to serve as a solid basis for the deployment in the fuel cell market. 展开更多
关键词 High-temperature proton exchange membrane fuel cells Acid leaching Oxidative degradation Mechanical degradation DURABILITY
下载PDF
Modeling of trap-assisted tunneling on performance of charge trapping memory with consideration of trap position and energy level
11
作者 伦志远 李云 +3 位作者 赵凯 杜刚 刘晓彦 王漪 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第8期447-451,共5页
In this work, the trap-assisted tunneling(TAT) mechanism is modeled as a two-step physical process for charge trapping memory(CTM). The influence of the TAT mechanism on CTM performance is investigated in consider... In this work, the trap-assisted tunneling(TAT) mechanism is modeled as a two-step physical process for charge trapping memory(CTM). The influence of the TAT mechanism on CTM performance is investigated in consideration of various trap positions and energy levels. For the simulated CTM structure, simulation results indicate that the positions of oxide traps related to the maximum TAT current contribution shift towards the substrate interface and charge storage layer interface during time evolutions in programming and retention operations, respectively. Lower programming voltage and retention operations under higher temperature are found to be more sensitive to tunneling oxide degradation. 展开更多
关键词 trap assisted tunneling charge trapping memory tunneling oxide degradation
下载PDF
Enhancement of Fe3O4/Au Composite Nanoparticles Catalyst in Oxidative Degradation of Methyl Orange Based on Synergistic Effect 被引量:2
12
作者 Qin Gao Yan Xing +7 位作者 Mingli Peng Yongshuai Liu Zhiyi Luo Yanyan Jin Haiming Fan Kebin Li Chao Chen Yali Cui 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2017年第9期1431-1436,共6页
Enhancement of Fe3O4/Au nanoparticles (Fe3O4/Au NPs) catalyst was observed in the oxidative degradation of methyl orange by employing H2O2 as oxidant. To evaluate the catalytic activity of Fe3O4/Au nanoparticles, di... Enhancement of Fe3O4/Au nanoparticles (Fe3O4/Au NPs) catalyst was observed in the oxidative degradation of methyl orange by employing H2O2 as oxidant. To evaluate the catalytic activity of Fe3O4/Au nanoparticles, different degradation conditions were investigated such as the amounts of catalyst, H2O2 concentration and pH value. Based on our data, methyl orange was degraded completely in a short time. The enhanced catalytic activity and increased oxidation rate constant may be ascribed to synergistic catalyst-activated decomposition of H2O2 to ,OH radical, which was one of the strong oxidizing species. Besides, Fe3O4/Au nanoparticles have exhibited satisfying recycle performance for potential industrial application. 展开更多
关键词 Fe3O4/Au nanoparticles methyl orange oxidative degradation hydroxyl radicals
原文传递
In-situ generation of gold nanoparticles on MnO_2 nanosheets for the enhanced oxidative degradation of basic dye(Methylene Blue) 被引量:1
13
作者 Xueqin Bao Zhen Qin +1 位作者 Tianshu Zhou Jingjing Deng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第3期236-245,共10页
In this work,the gold nanoparticles(Au-NPs)were in-situ generated on the surface of MnO2nanosheets to form MnO2/Au-NPs nanocomposite in a simple and cost-effective way.Multiple experiments were carried out to optimi... In this work,the gold nanoparticles(Au-NPs)were in-situ generated on the surface of MnO2nanosheets to form MnO2/Au-NPs nanocomposite in a simple and cost-effective way.Multiple experiments were carried out to optimize the oxidation of basic dye(Methylene Blue(MB)),including the molar ratio of MnO2to chloroauric acid(HAu Cl4),the p H of the solution and the effect of initial material.Under the optimal condition,the highest degradation efficiency for MB achieved to 98.9%within 60 min,which was obviously better than commercial MnO2powders(4.3%)and MnO2nanosheets(74.2%).The enhanced oxidative degradation might attribute to the in-situ generation of ultra-small and highly-dispersed Au-NPs which enlarged the synergistic effect and/or interfacial effect between MnO2nanosheets and Au-NPs and facilitated the uptake of electrons by MnO2from MB during the oxidation,thus validating the application of MnO2/Au-NPs nanocomposite for direct removal of organic dyes from wastewater in a simple and convenient fashion. 展开更多
关键词 MnO2/Au-NPs nanocomposite In-situ generation Dye degradation Synergistic effect and inteffacial effect Enhanced oxidative degradation
原文传递
Mesoporous carbon-supported cobalt catalyst for selective oxidation of toluene and degradation of water contaminants 被引量:3
14
作者 Yuan Zhuang Qisong Lin +4 位作者 Li Zhang Lianshun Luo Yuyuan Yao Wangyang Lu Wenxing Chen 《Particuology》 SCIE EI CAS CSCD 2016年第1期216-222,共7页
Mesoporous carbon-supported cobalt (Co-MC) catalysts are widely applied as electrode materials for bat- teries. Conversely, the development of Co-MC as bifunctional catalysts for application in organic catalytic rea... Mesoporous carbon-supported cobalt (Co-MC) catalysts are widely applied as electrode materials for bat- teries. Conversely, the development of Co-MC as bifunctional catalysts for application in organic catalytic reactions and degradation of water contaminants is slower. Herein, the catalyst displayed high activity in the selective oxidation of toluene to benzaldehyde under mild conditions, attaining a high selectivity of 92.3%. Factors influencing the catalytic reaction performance were also investigated. Additionally, Co-MC displayed remarkable catalytic activity in degrading dyes relative to the pure metal counterpart. Moreover, the catalyst exhibited excellent reusability, as determined by the cyclic catalytic experiments. The paper demonstrates the potential of Co-MC as a bifunctional catalyst for both toluene selective oxidation and water contaminant degradation. 展开更多
关键词 Mesoporous carbon Cobalt Bifunctional catalyst Toluene oxidation Dye degradation
原文传递
Synthesis,characterization and application of ZnO-Ag as a nanophotocatalyst for organic compounds degradation,mechanism and economic study 被引量:3
15
作者 S.Mohammadzadeh M.E.Olya +2 位作者 A.M.Arabi A.Shariati M.R.Khosravi Nikou 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第9期194-207,共14页
The current work deals with ZnO-Ag nanocomposites(in the wide range of x in the Zn1-x O-Ag x chemical composition) synthesized using microwave assisted solution combustion method.The structural, morphological and op... The current work deals with ZnO-Ag nanocomposites(in the wide range of x in the Zn1-x O-Ag x chemical composition) synthesized using microwave assisted solution combustion method.The structural, morphological and optical properties of the samples were characterized by XRD(X-ray diffraction), FTIR(Fourier transform infrared spectrometry), SEM(scanning electron microscopy technique), EDX(energy dispersive X-ray spectrum), ICP(inductively coupled plasma technique), TEM(transmission electron microscopy), BET(Brunauer–Emmett–Teller method), UV–Vis(ultraviolet–visible spectrophotometer) and photoluminescence spectrophotometer. The photocatalytic activity of the ZnO-Ag was investigated by photo-degradation of Acid Blue 113(AB 113) under UV illumination in a semi-batch reactor. This experiment showed that ZnO-Ag has much more excellent photocatalytic properties than ZnO synthesized by the same method. The enhanced photocatalytic activity was due to the decrease in recombination of photogenerated electron-holes. The results showed the improvement of ZnO photocatalytic activity and there is an optimum amount of Ag(3.5 mol%) that needs to be doped with ZnO.The effect of operating parameters such as p H, catalyst dose and dye concentration were investigated. The reaction byproducts were identified by LC/MS(liquid chromatography/mass spectrometry) analysis and a pathway was proposed as well. Kinetic studies indicated that the decolorization process follows the first order kinetics. Also, the degradation percentage of AB113 was determined using a total organic carbon(TOC) analyzer. Additionally, cost analysis of the process, the mechanism and the role of Ag were discussed. 展开更多
关键词 ZnO-Ag nanocomposite Photocatalyst degradation Advanced oxidation processes Wastewater treatment
原文传递
The contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using diamond anodes
16
作者 Nasr Bensalah Sondos Dbira Ahmed Bedoui 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第7期115-123,共9页
In this work, the contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using boron-doped diamond(BDD) anodes was investigated in different electrolytes. A complete mineraliz... In this work, the contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using boron-doped diamond(BDD) anodes was investigated in different electrolytes. A complete mineralization of cyanuric acid was obtained in Na Cl;however lower degrees of mineralization of 70% and 40% were obtained in Na2SO4 and Na Cl O4, respectively. This can be explained by the nature of the oxidants electrogenerated in each electrolyte. It is clear that the contribution of active chlorine(Cl2, HCl O, Cl O-)electrogenerated from oxidation of chlorides on BDD is much more important in the electrolytic degradation of cyanuric acid than the persulfate and hydroxyl radicals produced by electro-oxidation of sulfate and water on BDD anodes. This could be explained by the high affinity of active chlorine towards nitrogen compounds. No organic intermediates were detected during the electrolytic degradation of cyanuric acid in any the electrolytes, which can be explained by their immediate depletion by hydroxyl radicals produced on the BDD surface. Nitrates and ammonium were the final products of electrolytic degradation of cyanuric acid on BDD anodes in all electrolytes. In addition, small amounts of chloramines were formed in the chloride medium. Low current density(≤ 10 m A/cm2) and neutral medium(p H in the range 6–9) should be used for high efficiency electrolytic degradation and negligible formation of hazardous chlorate and perchlorate. 展开更多
关键词 Electrolytic degradation Diamond anode Supporting electrolyte Mediated oxidation Cyanuric acid
原文传递
Mediated electron transfer process inα-MnO_(2)catalyzed Fenton-like reaction for oxytetracycline degradation
17
作者 Yiqian Jiang Zihan Yang +3 位作者 Xiuru Bi Nan Yao Peiqing Zhao Xu Meng 《Chinese Chemical Letters》 SCIE CAS 2024年第8期367-372,共6页
In Fenton-like oxidation,the catalyst directly influences the reaction mechanism for the degradation of pollutants from water.Here,a α-MnO_(2)catalyst(OAm-1)was synthesized via a self-assembly method with the assista... In Fenton-like oxidation,the catalyst directly influences the reaction mechanism for the degradation of pollutants from water.Here,a α-MnO_(2)catalyst(OAm-1)was synthesized via a self-assembly method with the assistance of a surfactant.OAm-1 possessed a large specific surface area of_(2)21 m2/g,abundant mesoporous structures and a large proportion of Mn(III).Further characterization exhibited that OAm-1 had abundant oxygen vacancies and excellent reducibility and conductivity.The adsorption and catalytic ability of OAm-1 were studied in the degradation of oxytetracycline(OTC)via the activation of hydrogen peroxide(H_(2)O_(2)).Through the radical quenching experiments,electron resonance spectroscopy(EPR),X-ray photoelectron spectroscopy(XPS)and Fourier-transform infrared spectroscopy(FT-IR)analysis,Mn(III)of OAm-1 was proved to be the active sites for the chemisorption of OTC.Systematic electrochemical ex-periments and analysis have shown that a process of electron transfer mediated by OAm-1 occurred be-tween the pollutant and H_(2)O_(2)during a Fenton-like reaction.This work experimentally verifies the elec-tron transfer process dominated nonradical mechanism overα-MnO_(2),which is helpful for understanding the catalytic mechanism of the Fenton-like oxidation. 展开更多
关键词 Mediated electron transfer Hydrogen peroxide Oxidative degradation Manganese oxide Fenton oxidation
原文传递
Fabrication and Evaluation of a Bioactive Sr–Ca–P Contained Micro-Arc Oxidation Coating on Magnesium Strontium Alloy for Bone Repair Application 被引量:8
18
作者 Junjie Han Peng Wan +4 位作者 Yu Sun Zongyuan Liu Xinmin Fan Lili Tan Ke Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第3期233-244,共12页
Considering the compatibility between degradation and bioactivity of magnesium-based implants for bone repair, micro-arc oxidation is used to modify the magnesium alloy surface in aqueous electrolytes, allowing stront... Considering the compatibility between degradation and bioactivity of magnesium-based implants for bone repair, micro-arc oxidation is used to modify the magnesium alloy surface in aqueous electrolytes, allowing strontium, calcium, and phosphorus to be incorporated into the coating. The thickness, composition, morphology and phase of this Sr-Ca-P containing coating are characterized by scanning electron microscopy equipped with energy dispersive X-ray spectrometer and X-ray diffraction. The in vitro and in vivo degradation of the coating is evaluated by immersion test, electrochemical test and implantation test. Moreover, the cytocompatibility is tested with osteoblast cell according to ISO 10993. The results show that St, Ca and P elements are incorporated into the oxide coating, and a refined structure with tiny discharging micro-pores is observed on the surface of the coating. The Sr-Ca-P coating possesses a better corrosion resistance in vitro and retards the degradation in vivo. Such coating is expected to have significant medical applications on orthopedic implants and bone repair materials. 展开更多
关键词 Magnesium alloy Strontium Ca-P coating degradation Micro-arc oxidation
原文传递
Reaction mechanism of dicofol removal by cellulase
19
作者 Ziyuan Wang Ting Yang +2 位作者 Zihan Zhai Boya Zhang Jianbo Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第10期22-28,共7页
It remains unclear whether dicofol should be defined as a persistent organic pollutant. Its environmental persistence has gained attention. This study focused on its degradation by cellulase. Cellulase was separated u... It remains unclear whether dicofol should be defined as a persistent organic pollutant. Its environmental persistence has gained attention. This study focused on its degradation by cellulase. Cellulase was separated using a gel chromatogram, and its degradation activity towards dicofol involved its endoglucanase activity. By analyzing the kinetic parameters of cellulase reacting with mixed substrates, it was shown that cellulase reacted on dicofol and carboxyl methyl cellulose through two different active centers. Thus, the degradation of dicofol was shown to be an oxidative process by cellulase. Next, by comparing the impacts of tert-butyl alcohol(a typical OH free-radical inhibitor) on the removal efficiencies of dicofol under both cellulase and Fenton reagent systems, it was shown that the removal of dicofol was initiated by OH free radicals produced by cellulase. Finally, 4,4′-dichlorodibenzophenone and chloride were detected using gas chromatography mass spectrometry and ion chromatography analysis, which supported our hypothesis. The reaction mechanism was analyzed and involved an attack by OH free radicals at the orthocarbon of dicofol, resulting in the degradation product 4,4′-dichloro-dibenzophenone. 展开更多
关键词 Dicofol Cellulase Endo-glucanases activity Oxidative degradation OH free radical
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部