Cellulose is the most abundant natural polymer material in the world.Cellulose is diffi-cult to dissolve because it contains a large number of inter molecular hydrogen bonds.Therefore,the modification of natural cellu...Cellulose is the most abundant natural polymer material in the world.Cellulose is diffi-cult to dissolve because it contains a large number of inter molecular hydrogen bonds.Therefore,the modification of natural cellulose by chemical oxidation can expand its application field.The oxidation process of cellulose is focused on,the oxidation methods and research progress of cellulose are introduced,and further development direction of oxidized cellulose is prospected.展开更多
The self-charging concept has drawn considerable attention due to its excellent ability to achieve environmental energy harvesting,conversion and storage without an external power supply.However,most self-charging des...The self-charging concept has drawn considerable attention due to its excellent ability to achieve environmental energy harvesting,conversion and storage without an external power supply.However,most self-charging designs assembled by multiple energy harvesting,conversion and storage materials increase the energy transfer loss;the environmental energy supply is generally limited by climate and meteorological conditions,hindering the potential application of these selfpowered devices to be available at all times.Based on aerobic autoxidation of catechol,which is similar to the electrochemical oxidation of the catechol groups on the carbon materials under an electrical charge,we proposed an air-breathing chemical self-charge concept based on the aerobic autoxidation of catechol groups on oxygen-enriched carbon materials to ortho-quinone groups.Energy harvesting,conversion and storage functions could be integrated on a single carbon material to avoid the energy transfer loss among the different materials.Moreover,the assembled Cu/oxygen-enriched carbon battery confirmed the feasibility of the air-oxidation self-charging/electrical discharging mechanism for potential applications.This air-breathing chemical self-charge concept could facilitate the exploration of high-efficiency sustainable air self-charging devices.展开更多
The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles du...The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles during welding.The chaotically oriented IAF and refined PAGs inhibit crack initiation and propagation in the steel,resulting in high impact toughness.This work summarizes the com-bined effect of deoxidizers and alloying elements,with the aim to provide a new perspective for the research and practice related to im-proving the impact toughness of the heat affected zone(HAZ)during the high heat input welding.Ti complex deoxidation with other strong deoxidants,such as Mg,Ca,Zr,and rare earth metals(REMs),can improve the toughness of the heat-affected zone(HAZ)by re-fining PAGs or increasing IAF contents.However,it is difficult to identify the specific phase responsible for IAF nucleation because ef-fective inclusions formed by complex deoxidation are usually multiphase.Increasing alloying elements,such as C,Si,Al,Nb,or Cr,con-tents can impair HAZ toughness.A high C content typically increases the number of coarse carbides and decreases the potency of IAF formation.Si,Cr,or Al addition leads to the formation of undesirable microstructures.Nb reduces the high-temperature stability of the precipitates.Mo,V,and B can enhance HAZ toughness.Mo-containing precipitates present good thermal stability.VN or V(C,N)is ef-fective in promoting IAF nucleation due to its good coherent crystallographic relationship with ferrite.The formation of the B-depleted zone around the inclusion promotes IAF formation.The interactions between alloying elements are complex,and the effect of adding dif-ferent alloying elements remains to be evaluated.In the future,the interactions between various alloying elements and their effects on ox-ide metallurgy,as well as the calculation of the nucleation effects of effective inclusions using first principles calculations will become the focus of oxide metallurgy.展开更多
TEMPO/NaOCl/NaBr treatment significantly increased the number of negative charges on the cellulose surface.Two concentrations of NaOCl,5 and 30 mmol/g of cellulose,were used in this study.The number of carboxyl groups...TEMPO/NaOCl/NaBr treatment significantly increased the number of negative charges on the cellulose surface.Two concentrations of NaOCl,5 and 30 mmol/g of cellulose,were used in this study.The number of carboxyl groups in the two cellulosic samples oxidized using TEMPO/NaOCl/NaBr was 0.5160 and 1.8461 mmol/g of cellulose,respectively.The oxidized cellulose samples treated with 5 and 30 mmol/g NaOCl exhibited higher crystallinity,at 81.15%and 80.14%,respectively,compared to untreated cellulose,which had a crystallinity of 75.95%.The pH effect indicated that the highest adsorption capacity for methylene blue was achieved under alkaline conditions(pH 9),while the highest adsorption capacity for rhemazol yellow FG was achieved under acidic conditions.The kinetic model of TEMPO-oxidized cellulose for methylene blue and rhemazol yellow FG conformed to the pseudo-second-order model.The initial concentration parameter revealed that the isotherm model for the adsorption of methylene blue and rhemazol yellow FG by TEMPO-oxidized cellulose conformed to the Langmuir model.The dye removal efficiencies for methylene blue and rhemazol yellow FG using TEMPOoxidized cellulose(30 mmol/g)were approximately 80.17%and 59.52%,respectively.These results demonstrate that TEMPO/NaOCl/NaBr-oxidized samples can effectively separate cationic and anionic dye mixtures.Furthermore,the use of TEMPO-oxidized cellulose showed good regeneration capability,maintaining more than 95%of its adsorption capacity after 8 cycles.展开更多
Background Oxidized soybean oil(OSO)has been shown to impair growth and exacerbate inflammation,leading to intestinal barrier injury in animals.Recent evidence suggests important roles for resveratrol(RES)in the promo...Background Oxidized soybean oil(OSO)has been shown to impair growth and exacerbate inflammation,leading to intestinal barrier injury in animals.Recent evidence suggests important roles for resveratrol(RES)in the promoting growth performance,antioxidant capacity,anti-inflammatory,and regulate intestinal barriers in animals.Therefore,The objectives of this study are to investigate the effects of dietary RES(purity 98%)supplementation on the growth performance,antioxidant capacity,inflammatory state,and intestinal function of weaned piglets challenged with OSO.Methods A total of 28 castrated weaned male piglets with a similar body weight of 10.197 replications per treatment and±0.10 kg were randomly assigned to 4 dietary treatments for 28-d feeding trial with 1 piglet per replicate.Treatments were arranged as a 2×2 factorial with oil type[3%fresh soybean oil(FSO)vs.3%OSO]and dietary RES(0vs.300 mg/kg).Results The results showed that relative to the FSO group,OSO stress tended to decrease the average daily feed intake(ADFI),and decreased the activity levels of lipase,villus/crypt ratio(VCR),the mRNA expression of FABP1,SOD2,IL-10 and ZO-1 in the jejunum,and SOD2,GPX1,occludin and ZO-1 in the colon,the levels of acetic acid in the colonic digesta,whereas up-regulated the mRNA expression of IL-1βand TNF-αin the jejunum(P<0.05).Moreover,dietary supplementation with RES increased ether extract(EE),the activity levels of sucrase,lipase,α-amylase,villus height(VH)and VCR,the mRNA expression of FABP1,SOD2,IL-10 and occludin in the jejunum,and FABP1,PPAR-γ,GPX1,occludin and ZO-1 in the colon,and the abundance of Firmicutes,acetic and propionic acid,but decreased the levels of D-lactic acid in the plasma,the abundance of Bacteroidetes in the colonic digesta of weaned piglets compared to the non-RES group(P<0.05).Meanwhile,in the interaction effect analysis,relative to the OSO group,dietary RES supplementation in the diets supplemented with OSO increased the activity levels of trypsin,VH in the jejunum,the abundance of Actinobacteria,the levels of butyric acid of weaned piglets,but failed to influence the activity levels of trypsin and VH,Actinobacteria abundance,the levels of butyric acid when diets were supplemented with FSO(interaction,P<0.05).Relative to the OSO group,dietary RES supplementation in the diets supplemented with OSO decreased the activity levels of DAO in the plasma of weaned piglets but failed to influence the activity levels of DAO when diets were supplemented with FSO(interaction,P<0.05).Relative to the FSO group,dietary RES supplementation in the diets supplemented with FSO decreased the level of propionic acid,whereas RES supplementation failed to influence the level of propionic acid when the diet was supplemented with OSO(interaction,P<0.01).Conclusions Inclusion of OSO intensified inflammatory states and impaired the intestinal health characteristics of weaned piglets.Dietary RES supplementation improved the antioxidant capacity,anti-inflammatory activity,and intestinal morphology.Further studies showed that the protective effects of RES on gut health could be linked to the decreased abundance of Prevotella_1,Clostridium_sensu_stricto_6,and Prevotellaceae_UCG003 and increased levels of acetic and propionic acid.展开更多
Ammonium dinitramide(ADN)is considered as a potential substitute for ammonium perchlorate in energetic materials due to its high density,positive oxygen balance,and halogen-free characteristics.However,its application...Ammonium dinitramide(ADN)is considered as a potential substitute for ammonium perchlorate in energetic materials due to its high density,positive oxygen balance,and halogen-free characteristics.However,its application has been severely limited because of its strong hygroscopicity,difficult storage,and incompatibility with isocyanate curing agents.In order to better bloom the advantages of the highly energetic and environment-friendly ADN in the fields of energetic materials,an in-depth analysis of the current situation and discussion of key research points are particularly important.In this paper,a detailed overview on the synthesis,thermal decomposition,hygroscopic mechanism,and antihygroscopicity of ADN has been discussed,its application in powdes and explosives are also presented,and its future research directions are proposed.展开更多
Magnesium alloys are more widely used at higher temperatures.However,it is not well known whether oxide layer,produced at high temperature,could show corrosion protection.Thus,the corrosion behaviors of oxidized AZW80...Magnesium alloys are more widely used at higher temperatures.However,it is not well known whether oxide layer,produced at high temperature,could show corrosion protection.Thus,the corrosion behaviors of oxidized AZW800 alloy were investigated by hydrogen evolution and electrochemical measurements to evaluate effect of oxide layer on corrosion resistance.The results showed that corrosion of removed oxide layer AZW800 alloy showed characteristic of localized corrosion,leaving randomly bulky pits.While reserved oxide layer AZW800 alloy exhibited a relatively uniform corrosion.The results indicated that oxide layer could hinder corrosion of oxidized AZW800 alloy in the initial period of immersion.While subsequently,aggravated corrosion would occur owing to defects of oxide layer and less protective products film.Besides,present of oxide layer eliminated micro-galvanic couple on alloy surface.The synergistic effect of elimination of micro-galvanic couple on alloy surface and alkalization effect transforms localized corrosion into relatively uniform corrosion of alloys.展开更多
The adsorption dynamics of double-stranded DNA(dsDNA)molecules on a graphene oxide(GO)surface are important for applications of DNA/GO functional structures in biosensors,biomedicine and materials science.In this work...The adsorption dynamics of double-stranded DNA(dsDNA)molecules on a graphene oxide(GO)surface are important for applications of DNA/GO functional structures in biosensors,biomedicine and materials science.In this work,molecular dynamics simulations were used to examine the adsorption of different length dsDNA molecules(from 4 bp to24 bp)on the GO surface.The dsDNA molecules could be adsorbed on the GO surface through the terminal bases and stand on the GO surface.For short dsDNA(4 bp)molecules,the double-helix structure was partially or totally broken and the adsorption dynamics was affected by the structural fluctuation of short dsDNA and the distribution of the oxidized groups on the GO surface.For long dsDNA molecules(from 8 bp to 24 bp)adsorption is stable.By nonlinear fitting of the contact angle between the axis of the dsDNA molecule and the GO surface,we found that a dsDNA molecule adsorbed on a GO surface has the chance of orienting parallel to the GO surface if the length of the dsDNA molecule is longer than 54 bp.We attributed this behavior to the flexibility of dsDNA molecules.With increasing length,the flexibility of dsDNA molecules also increases,and this increasing flexibility gives an adsorbed dsDNA molecule more chance of reaching the GO surface with the free terminal.This work provides a whole picture of adsorption of dsDNA molecules on the GO surface and should be of benefit for the design of DNA/GO based biosensors.展开更多
A new technique to fabricate silicon condenser microphone is presented.The technique is based on the use of oxidized porous silicon as sacrificial layer for the air gap and the heavy p+-doping silicon of approximately...A new technique to fabricate silicon condenser microphone is presented.The technique is based on the use of oxidized porous silicon as sacrificial layer for the air gap and the heavy p+-doping silicon of approximately 15μm thickness for the stiff backplate.The measured sensitivity of the microphone fabricated with this technique is in the range from -45dB(5.6mV/Pa) to -55dB(1.78mV/Pa) under the frequency from 500Hz to 10kHz,and shows a gradual increase at higher frequency.The cut-off frequency is above 20kHz.展开更多
Objective: To compare the level of glutathione(GSH) and oxidized glutathione(GSSG),the ratio of GSH/GSSG and the concentration of albumin in plasma of patients with complicated and un-complicated falciparum malaria.Me...Objective: To compare the level of glutathione(GSH) and oxidized glutathione(GSSG),the ratio of GSH/GSSG and the concentration of albumin in plasma of patients with complicated and un-complicated falciparum malaria.Methods: This research was a cross sectional study using comparison analysis with the plasma GSH and GSSG, the ratio of plasma GSH/GSSG and the concentration of plasma albumin as variables. The complicated malaria patients were obtained from Dr. Saiful Anwar Hospital Malang, whereas uncomplicated malaria patients were obtained from the Regency of Pleihari South Kalimantan. Plasma GSH and GSSG levels were determined by the spectrophotometer at the wave length of 412 nm, whereas the concentration of albumin was determined by bromocresol green method in the p H of 4.1.Results: There were no significant differences between the level of plasma GSH and GSSG in complicated and uncomplicated malaria patients, as well as the ratio of plasma GSH/GSSG in the two groups(P = 0.373; P = 0.538; and P = 0.615, respectively, independent ttest). In contrast, the plasma albumin concentration in complicated malaria patients were significantly higher than uncomplicated malaria patients(P = 0.000, Mann Whitney U test).Conclusions: It can be concluded that the average of plasma GSH and GSSG level, also plasma GSH/GSSG ratio in complicated malaria are not different from uncomplicated malaria. Although plasma concentration of albumin in both groups is below the normal range,there is an increase in complicated malaria that might be as compensation of oxidative stress.展开更多
Alkali treatments with three concentrations were used to modify a microarc-oxidized(MAO) coating on titanium alloy surface in order to further improve its surface bioactivity. Morphology, chemical compositions and pha...Alkali treatments with three concentrations were used to modify a microarc-oxidized(MAO) coating on titanium alloy surface in order to further improve its surface bioactivity. Morphology, chemical compositions and phase constitues, roughness, contact angle and apatite induction of the alkali-treated coatings were studied and compared. Scanning electron microscope(SEM) was applied to observe the morphologies, X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS) were used to detect the phase constitutes and chemical compositions, a surface topography profilometer was used to analyze the surface roughness, and contact angle was measured by liquid drop method. Alkali treatements result in the formation of Na2Ti6O13 and Na2Ti3O7 phase on the MAO coating, which leads to the increase of surface roughness and the decrease of contact angle. Experimental results showed that the apatite induction of the alkali-treated coatings was dependent on the applied alkali concentrations during treatments, and Na+concentration can promote the formation of apatite phase.展开更多
OLAND(oxygen limited autotrophic nitrification and denitrification) nitrogen removal system was constructed by coupling with oxygen limited nitritation stage and anaerobic ammonium oxidation stage. Ammonia oxidizer, a...OLAND(oxygen limited autotrophic nitrification and denitrification) nitrogen removal system was constructed by coupling with oxygen limited nitritation stage and anaerobic ammonium oxidation stage. Ammonia oxidizer, as a kind of key bacteria in N cycle, plays an important role at the oxygen limited nitritation stage of OLAND nitrogen removal system. In this study, specific amplification of 16S rDNA fragment of ammonia oxidizer by nested PCR, separation of mixed PCR samples by denaturing gradient gel electrophoresis(DGGE), and the quantification of ammonia oxidizer by fluorescence in situ hybridization(FISH) were combined to investigate the shifts of community composition and quantity of ammonia oxidizer of the oxygen limited nitritation stage in OLAND system. It showed that the community composition of ammonia oxidizer changed drastically when dissolved oxygen was decreased gradually, and the dominant ammonia oxidizer of the steady nitrite accumulation stage were completely different from that of the early stage of oxygen limited nitritation identified by DGGE . It was concluded that the Nitrosomonas may be the dominant genus of ammonia oxidizer at the oxygen limited nitritation stage of OLAND system characterized by nested PCR-DGGE and FISH, and the percentage of Nitrosomonas was 72.5% ±0.8% of ammonia oxidizer at the steady nitrite accumulation stage detected by FISH.展开更多
Six additives,i.e.,limestone,lime,magnesite,magnesia,dolomite and light-burned-dolomite,were added for investigating their influences on the pellet quality.For green balls,adding lime and light-burned-dolomite makes t...Six additives,i.e.,limestone,lime,magnesite,magnesia,dolomite and light-burned-dolomite,were added for investigating their influences on the pellet quality.For green balls,adding lime and light-burned-dolomite makes the wet drop strength decrease firstly,and then increase with further increase of additive dosage.Ca(OH)2 affects the bentonite properties at the beginning,but the binding property of Ca(OH)2 will be main when the dosage is higher.The other four additives decrease the drop strength for their disadvantageous physical properties.For preheated pellets,no mater what kind of additive is added,the compressive strength will be decreased because of unmineralized additives.For roasted pellets,calcium additives can form binding phase of calcium-ferrite,and suitable liquid phase will improve recrystallization of hematite,but excessive liquid will destroy the structure of pellets,so the compressive strength of pellet increases firstly and then drops.When adding magnesium additives,the strength will be decreased because of the oxidation of magnetite retarded by MgO.展开更多
Oxidized nanoporous g-C3N4(PCNO)decorated with graphene oxide quantum dots(ox-GQDs)was successfully prepared by a facile self-assembly method.As co-catalysts,the ultrasmall zero-dimensional(0 D)ox-GQDs can achieve uni...Oxidized nanoporous g-C3N4(PCNO)decorated with graphene oxide quantum dots(ox-GQDs)was successfully prepared by a facile self-assembly method.As co-catalysts,the ultrasmall zero-dimensional(0 D)ox-GQDs can achieve uniform dispersion on the surface/inner channels of PCNO,as well as intimate contact with PCNO through hydrogen bonding,π-π,and chemical bonding interactions.In contrast with PCNO,the ox-GQDs/PCNO composite photocatalysts possessed improved light-harvesting ability,higher charge-transfer efficiency,enhanced photooxidation capacity,and increased amounts of reactive species due to the upconversion properties,strong electron capturing ability,and peroxidase-like activity of the ox-GQDs.Therefore,the visible-light photocatalytic degradation and disinfection performances of the ox-GQDs/PCNO composite were significantly enhanced.Remarkably,the composite with a 0.2 wt.% deposited amount of ox-GQDs(ox-GQDs-0.2%/PCNO)exhibited optimum amaranth photodegradation activity,with a corresponding rate about 3.1 times as high as that of PCNO.In addition,ox-GQDs-0.2%/PCNO could inactivate about 99.6%of Escherichia coli(E.coli)cells after 4 h of visible light irradiation,whereas only^31.9% of E.coli cells were killed by PCNO.Furthermore,h+,·O2-,and·OH were determined to be the reactive species generated in the photocatalytic process of the ox-GQDs/PCNO system;these species can thoroughly mineralize azo dyes and effectively inactivate pathogenic bacteria.展开更多
Objective PERK/elF2/CHOP is a major signaling pathway mediating endoplasmic reticulum (ER) stress related with atherosclerosis. Oxidized LDL (ox-LDL) also induces endothelial apoptosis and plays a vital role in th...Objective PERK/elF2/CHOP is a major signaling pathway mediating endoplasmic reticulum (ER) stress related with atherosclerosis. Oxidized LDL (ox-LDL) also induces endothelial apoptosis and plays a vital role in the initiation and progression of atherosclerosis. The present study was conducted to explore the regulatory effect of ox-LDL on PERK/elF2a/CHOP signaling pathway in vascular endothelial cells. Methods The effects of ox-LDL on PERK and p-elF2a protein expression of primary human umbilical vein endothelial cells (HUVECs) were investigated by Western blot analysis. PERK gene silencing and selective elF2a phosphatase inhibitor, salubrinal were used to inhibit the process of ox-LDL induced endothelial cell apoptosis, caspase-3 activity, and CHOP mRNA level. Results Ox-LDL treatment significantly increased the expression of PERK, PERK-mediated inactivation of elF2a phosphorylation, and the expression of CHOP, as well as the caspase-3 activity and apoptosis. The effects of ox-LDL were markedly decreased by knocking down PERK with stable transduction of lentiviral shRNA or by selective elF2a phosphatase inhibitor, salubrinal. Conclusion This study provides the first evidence that ox-LDL induces apoptosis in vascular endothelial cells mediated largely via the PERK/elF2a/CHOP ER-stress pathway. It adds new insights into the molecular mechanisms underlying the pathogenesis and progression of atherosclerosis.展开更多
The calcined magnesite was utilized as a kind of MgO bearing additive to produce MgO bearing pellets. The effects of MgO on densification and consolidation of pellets were investigated. The experimental results show t...The calcined magnesite was utilized as a kind of MgO bearing additive to produce MgO bearing pellets. The effects of MgO on densification and consolidation of pellets were investigated. The experimental results show that, at the same process parameters, the porosity and pore size distribution of green pellets have no evident relation with the MgO bearing additive, pore size of green pellets is between 15 μm and 35 μm and the porosity of green pellets is about 34%. There is a densification and consolidation phenomenon during the induration process; the pore size and porosity of product pellets decrease gradually; and the structure of product pellets becomes dense. MgO makes a negative effect on the densification and consolidation of product pellets, the densification ratio of pellets decreases from 46.3% to 28.6% with the addition of MgO bearing additive from 0 to 2.0 %. The porosity and the pore size of product pellets increase gradually with the increase of MgO content; When the mass fraction of MgO bearing additive increases from 0 to 2.0%, the pore size of product pellet increases and the pore size distributes in a large range. Also, the porosity increases from 18.61% to 24.06%.展开更多
Oxidized low-density lipoprotein receptor 1(OLR1)is upregulated in neurons and participates in hypertension-induced neuronal apoptosis.OLR1 deletion exerts protective effects on cerebral damage induced by hypertensive...Oxidized low-density lipoprotein receptor 1(OLR1)is upregulated in neurons and participates in hypertension-induced neuronal apoptosis.OLR1 deletion exerts protective effects on cerebral damage induced by hypertensive-induced stroke.Therefore,OLR1 is likely involved in the progress of intracerebral hemorrhage.In this study,we examined the potential role of OLR1 in intracerebral hemorrhage using a rat model.OLR1 small interfering RNA(10μL;50 pmol/μL)was injected into the right basal ganglia to knock down OLR1.Twenty-four hours later,0.5 U collagenase type VII was injected to induce intracerebral hemorrhage.We found that knockdown of OLR1 attenuated neurological behavior impairment in rats with intracerebral hemorrhage and reduced hematoma,neuron loss,inflammatory reaction,and oxidative stress in rat brain tissue.We also found that silencing of OLR1 suppressed ferroptosis induced by intracerebral hemorrhage and the p38 signaling pathway.Therefore,silencing OLR1 exhibits protective effects against secondary injury of intracerebral hemorrhage.These findings suggest that OLR1 may be a novel potential therapeutic target for intracerebral hemorrhage.展开更多
The effects of oxidized low density lipoprotein (ox-LDL) on the proliferation of cultured human vascular smooth muscle cells (vSMC) were investigated in vitro. By using NaBr density gradient centrifugation, LDL wa...The effects of oxidized low density lipoprotein (ox-LDL) on the proliferation of cultured human vascular smooth muscle cells (vSMC) were investigated in vitro. By using NaBr density gradient centrifugation, LDL was isolated and purified from human plasma. Ox-LDL was produced from LDL by being incubated with CuSO4. ox-LDL was then added to the culture medium at different concentrations (35, 60, 85, 110, 135 and 160μg/mL) for 7 days. The influence of ox-LDL on vSMC proliferation was observed in growth curve, mitosis index, and in situ determination of apoptosis. The data were analyzed with SPSS 10.0 software. The results showed that the ox-LDL produced in vitro had a good purity and optimal oxidative degree, which was similar to the intrinsic ox-LDL in atherosclerotic plaque, ox-LDL at a concentration of 35 μg/mL demonstrated the strongest proliferation inducement, and at a concentration of 135 μg/mL, ox-LDL could inhibit the growth of vSMC. ox-LDL at concentrations of 35 and 50 μg/mL presented powerful mitotic trigger, and with the increase of ox-LDL concentration, the mitotic index of vSMC was decreased gradually, ox-LDL at higher concentrations promoted more apoptotic vSMCs, ox-LDL at lower concentrations triggered proliferation of vSMCs, and at higher concentrations induced apoptosis in vSMCs, ox-LDL played a promotional role in the pathogenesis and development of atherosclerosis by affecting vSMC proliferation and apoptosis.展开更多
The effects of SiO_(2) content on the preparation process and metallurgical properties of acid oxidized pellets, including compressive strength, reduction, and softening–melting behaviors, were systematically investi...The effects of SiO_(2) content on the preparation process and metallurgical properties of acid oxidized pellets, including compressive strength, reduction, and softening–melting behaviors, were systematically investigated.Mineralogical structures, elemental distribution, and pore size distribution were varied to analyze the mechanism of the effects.The results show that with an increase in SiO_(2) content from 3.51 wt%to 7.18 wt%, compressive strength decreases from 3150 N/pellet to 2100 N/pellet and reducibility decreases from 76.5% to 71.4%.The microstructure showed that pellets with high SiO_(2) content contained more magnetite in the mineralogical structures.Additionally, some liquid phases appeared, which hindered the continuous crystallization of hematite.Also, the softening–melting properties of the pellets clearly deteriorated as the SiO_(2) content increased.With increasing SiO_(2) content, the temperature range of the softening–melting zone decreased, and the maximum differential pressure and the comprehensive permeability index increased significantly.When acid oxidized pellets are used as the raw materials for blast furnace smelting, it should be combined with high basicity sinters to improve the softening–melting behaviors of the comprehensive charge.展开更多
It is of great importance to elucidate reduction swelling behaviors and reaction mechanism of oxidized pellet in hydrogen-enriched atmosphere under coke oven gas injection. In this work, the effects of hydrogen concen...It is of great importance to elucidate reduction swelling behaviors and reaction mechanism of oxidized pellet in hydrogen-enriched atmosphere under coke oven gas injection. In this work, the effects of hydrogen concentration in N_2-CO-H_2 atmosphere with unchanged CO content on reduction swelling behaviors of oxidized pellet at 1173 K were studied, to clarify the mechanism of hydrogen-enriched reduction and exclude the influences of CO. Then, the reduction swelling behaviors of oxidized pellet at 1173 K in actual atmosphere under coke oven gas(COG) injection, got from the simulation results of multi-fluid blast furnace model, were investigated. The results show that with the concentration of hydrogen increasing in N_2-CO-H_2 gas from 2% to 18%, the reduction swelling index of pellet decreases from 10.12% to 5.57% while the reduction ratio of pellet increases obviously from 39.85% to 69.58%. In addition, with COG injection rate increasing from 0 to 152.34 m^3/t, the reduction swelling index of pellet decreases slightly from 10.71% to 9.54% while the reduction ratio of pellet is increased from 31.57% to 36.39%. The microstructures of pellet are transformed from the platy structure to the flocculent structure.展开更多
文摘Cellulose is the most abundant natural polymer material in the world.Cellulose is diffi-cult to dissolve because it contains a large number of inter molecular hydrogen bonds.Therefore,the modification of natural cellulose by chemical oxidation can expand its application field.The oxidation process of cellulose is focused on,the oxidation methods and research progress of cellulose are introduced,and further development direction of oxidized cellulose is prospected.
基金financially supported by the National Natural Science Foundation of China(51503178,52202048,52027801)National Key R&D Program of China(2017YFA0206301)+1 种基金China-Germany Collaboration Project(M-0199)Natural Science Foundation of Hebei Province(B2021203012,E2022203082)。
文摘The self-charging concept has drawn considerable attention due to its excellent ability to achieve environmental energy harvesting,conversion and storage without an external power supply.However,most self-charging designs assembled by multiple energy harvesting,conversion and storage materials increase the energy transfer loss;the environmental energy supply is generally limited by climate and meteorological conditions,hindering the potential application of these selfpowered devices to be available at all times.Based on aerobic autoxidation of catechol,which is similar to the electrochemical oxidation of the catechol groups on the carbon materials under an electrical charge,we proposed an air-breathing chemical self-charge concept based on the aerobic autoxidation of catechol groups on oxygen-enriched carbon materials to ortho-quinone groups.Energy harvesting,conversion and storage functions could be integrated on a single carbon material to avoid the energy transfer loss among the different materials.Moreover,the assembled Cu/oxygen-enriched carbon battery confirmed the feasibility of the air-oxidation self-charging/electrical discharging mechanism for potential applications.This air-breathing chemical self-charge concept could facilitate the exploration of high-efficiency sustainable air self-charging devices.
基金supported by the National Natural Science Foundation of China(No.U1960202).
文摘The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles during welding.The chaotically oriented IAF and refined PAGs inhibit crack initiation and propagation in the steel,resulting in high impact toughness.This work summarizes the com-bined effect of deoxidizers and alloying elements,with the aim to provide a new perspective for the research and practice related to im-proving the impact toughness of the heat affected zone(HAZ)during the high heat input welding.Ti complex deoxidation with other strong deoxidants,such as Mg,Ca,Zr,and rare earth metals(REMs),can improve the toughness of the heat-affected zone(HAZ)by re-fining PAGs or increasing IAF contents.However,it is difficult to identify the specific phase responsible for IAF nucleation because ef-fective inclusions formed by complex deoxidation are usually multiphase.Increasing alloying elements,such as C,Si,Al,Nb,or Cr,con-tents can impair HAZ toughness.A high C content typically increases the number of coarse carbides and decreases the potency of IAF formation.Si,Cr,or Al addition leads to the formation of undesirable microstructures.Nb reduces the high-temperature stability of the precipitates.Mo,V,and B can enhance HAZ toughness.Mo-containing precipitates present good thermal stability.VN or V(C,N)is ef-fective in promoting IAF nucleation due to its good coherent crystallographic relationship with ferrite.The formation of the B-depleted zone around the inclusion promotes IAF formation.The interactions between alloying elements are complex,and the effect of adding dif-ferent alloying elements remains to be evaluated.In the future,the interactions between various alloying elements and their effects on ox-ide metallurgy,as well as the calculation of the nucleation effects of effective inclusions using first principles calculations will become the focus of oxide metallurgy.
文摘TEMPO/NaOCl/NaBr treatment significantly increased the number of negative charges on the cellulose surface.Two concentrations of NaOCl,5 and 30 mmol/g of cellulose,were used in this study.The number of carboxyl groups in the two cellulosic samples oxidized using TEMPO/NaOCl/NaBr was 0.5160 and 1.8461 mmol/g of cellulose,respectively.The oxidized cellulose samples treated with 5 and 30 mmol/g NaOCl exhibited higher crystallinity,at 81.15%and 80.14%,respectively,compared to untreated cellulose,which had a crystallinity of 75.95%.The pH effect indicated that the highest adsorption capacity for methylene blue was achieved under alkaline conditions(pH 9),while the highest adsorption capacity for rhemazol yellow FG was achieved under acidic conditions.The kinetic model of TEMPO-oxidized cellulose for methylene blue and rhemazol yellow FG conformed to the pseudo-second-order model.The initial concentration parameter revealed that the isotherm model for the adsorption of methylene blue and rhemazol yellow FG by TEMPO-oxidized cellulose conformed to the Langmuir model.The dye removal efficiencies for methylene blue and rhemazol yellow FG using TEMPOoxidized cellulose(30 mmol/g)were approximately 80.17%and 59.52%,respectively.These results demonstrate that TEMPO/NaOCl/NaBr-oxidized samples can effectively separate cationic and anionic dye mixtures.Furthermore,the use of TEMPO-oxidized cellulose showed good regeneration capability,maintaining more than 95%of its adsorption capacity after 8 cycles.
基金supported by the National Natural Science Foundation of China(31872986)。
文摘Background Oxidized soybean oil(OSO)has been shown to impair growth and exacerbate inflammation,leading to intestinal barrier injury in animals.Recent evidence suggests important roles for resveratrol(RES)in the promoting growth performance,antioxidant capacity,anti-inflammatory,and regulate intestinal barriers in animals.Therefore,The objectives of this study are to investigate the effects of dietary RES(purity 98%)supplementation on the growth performance,antioxidant capacity,inflammatory state,and intestinal function of weaned piglets challenged with OSO.Methods A total of 28 castrated weaned male piglets with a similar body weight of 10.197 replications per treatment and±0.10 kg were randomly assigned to 4 dietary treatments for 28-d feeding trial with 1 piglet per replicate.Treatments were arranged as a 2×2 factorial with oil type[3%fresh soybean oil(FSO)vs.3%OSO]and dietary RES(0vs.300 mg/kg).Results The results showed that relative to the FSO group,OSO stress tended to decrease the average daily feed intake(ADFI),and decreased the activity levels of lipase,villus/crypt ratio(VCR),the mRNA expression of FABP1,SOD2,IL-10 and ZO-1 in the jejunum,and SOD2,GPX1,occludin and ZO-1 in the colon,the levels of acetic acid in the colonic digesta,whereas up-regulated the mRNA expression of IL-1βand TNF-αin the jejunum(P<0.05).Moreover,dietary supplementation with RES increased ether extract(EE),the activity levels of sucrase,lipase,α-amylase,villus height(VH)and VCR,the mRNA expression of FABP1,SOD2,IL-10 and occludin in the jejunum,and FABP1,PPAR-γ,GPX1,occludin and ZO-1 in the colon,and the abundance of Firmicutes,acetic and propionic acid,but decreased the levels of D-lactic acid in the plasma,the abundance of Bacteroidetes in the colonic digesta of weaned piglets compared to the non-RES group(P<0.05).Meanwhile,in the interaction effect analysis,relative to the OSO group,dietary RES supplementation in the diets supplemented with OSO increased the activity levels of trypsin,VH in the jejunum,the abundance of Actinobacteria,the levels of butyric acid of weaned piglets,but failed to influence the activity levels of trypsin and VH,Actinobacteria abundance,the levels of butyric acid when diets were supplemented with FSO(interaction,P<0.05).Relative to the OSO group,dietary RES supplementation in the diets supplemented with OSO decreased the activity levels of DAO in the plasma of weaned piglets but failed to influence the activity levels of DAO when diets were supplemented with FSO(interaction,P<0.05).Relative to the FSO group,dietary RES supplementation in the diets supplemented with FSO decreased the level of propionic acid,whereas RES supplementation failed to influence the level of propionic acid when the diet was supplemented with OSO(interaction,P<0.01).Conclusions Inclusion of OSO intensified inflammatory states and impaired the intestinal health characteristics of weaned piglets.Dietary RES supplementation improved the antioxidant capacity,anti-inflammatory activity,and intestinal morphology.Further studies showed that the protective effects of RES on gut health could be linked to the decreased abundance of Prevotella_1,Clostridium_sensu_stricto_6,and Prevotellaceae_UCG003 and increased levels of acetic and propionic acid.
基金financially supported by the National Natural Science Foundation of China (Project No. 21805139, 12102194, 22005144 and 22005145)the Joint Funds of the National Natural Science Foundation of China (No. U2141202)+1 种基金Natural Science Foundation of Jiangsu Province (No. BK20200471)the Fundamental Research Funds for the Central Universities (No. 30920041106, 30921011203)
文摘Ammonium dinitramide(ADN)is considered as a potential substitute for ammonium perchlorate in energetic materials due to its high density,positive oxygen balance,and halogen-free characteristics.However,its application has been severely limited because of its strong hygroscopicity,difficult storage,and incompatibility with isocyanate curing agents.In order to better bloom the advantages of the highly energetic and environment-friendly ADN in the fields of energetic materials,an in-depth analysis of the current situation and discussion of key research points are particularly important.In this paper,a detailed overview on the synthesis,thermal decomposition,hygroscopic mechanism,and antihygroscopicity of ADN has been discussed,its application in powdes and explosives are also presented,and its future research directions are proposed.
基金The authors are very grateful to the Nation Natural Science Foundation of China(No.51974082,No.51901037)the Natural Science Foundation of Liaoning Province,China(No.2019-BS-083)State Key Laboratory of Baiyunobo Rare Earth Resource Researched and Comprehensive Utilization(No.2021H2279)。
文摘Magnesium alloys are more widely used at higher temperatures.However,it is not well known whether oxide layer,produced at high temperature,could show corrosion protection.Thus,the corrosion behaviors of oxidized AZW800 alloy were investigated by hydrogen evolution and electrochemical measurements to evaluate effect of oxide layer on corrosion resistance.The results showed that corrosion of removed oxide layer AZW800 alloy showed characteristic of localized corrosion,leaving randomly bulky pits.While reserved oxide layer AZW800 alloy exhibited a relatively uniform corrosion.The results indicated that oxide layer could hinder corrosion of oxidized AZW800 alloy in the initial period of immersion.While subsequently,aggravated corrosion would occur owing to defects of oxide layer and less protective products film.Besides,present of oxide layer eliminated micro-galvanic couple on alloy surface.The synergistic effect of elimination of micro-galvanic couple on alloy surface and alkalization effect transforms localized corrosion into relatively uniform corrosion of alloys.
基金Project supported by the National Natural Science Foundation of China (Grant No.11974366)the Fundamental Research Funds for the Central Universities+2 种基金Chinathe Supercomputer Center of the Chinese Academy of Sciencesthe Shanghai Supercomputer Center of China。
文摘The adsorption dynamics of double-stranded DNA(dsDNA)molecules on a graphene oxide(GO)surface are important for applications of DNA/GO functional structures in biosensors,biomedicine and materials science.In this work,molecular dynamics simulations were used to examine the adsorption of different length dsDNA molecules(from 4 bp to24 bp)on the GO surface.The dsDNA molecules could be adsorbed on the GO surface through the terminal bases and stand on the GO surface.For short dsDNA(4 bp)molecules,the double-helix structure was partially or totally broken and the adsorption dynamics was affected by the structural fluctuation of short dsDNA and the distribution of the oxidized groups on the GO surface.For long dsDNA molecules(from 8 bp to 24 bp)adsorption is stable.By nonlinear fitting of the contact angle between the axis of the dsDNA molecule and the GO surface,we found that a dsDNA molecule adsorbed on a GO surface has the chance of orienting parallel to the GO surface if the length of the dsDNA molecule is longer than 54 bp.We attributed this behavior to the flexibility of dsDNA molecules.With increasing length,the flexibility of dsDNA molecules also increases,and this increasing flexibility gives an adsorbed dsDNA molecule more chance of reaching the GO surface with the free terminal.This work provides a whole picture of adsorption of dsDNA molecules on the GO surface and should be of benefit for the design of DNA/GO based biosensors.
文摘A new technique to fabricate silicon condenser microphone is presented.The technique is based on the use of oxidized porous silicon as sacrificial layer for the air gap and the heavy p+-doping silicon of approximately 15μm thickness for the stiff backplate.The measured sensitivity of the microphone fabricated with this technique is in the range from -45dB(5.6mV/Pa) to -55dB(1.78mV/Pa) under the frequency from 500Hz to 10kHz,and shows a gradual increase at higher frequency.The cut-off frequency is above 20kHz.
基金Supported by The Ministry of Research & Technology Republic of Indonesia with grant No.499/J10.2/PL/2009
文摘Objective: To compare the level of glutathione(GSH) and oxidized glutathione(GSSG),the ratio of GSH/GSSG and the concentration of albumin in plasma of patients with complicated and un-complicated falciparum malaria.Methods: This research was a cross sectional study using comparison analysis with the plasma GSH and GSSG, the ratio of plasma GSH/GSSG and the concentration of plasma albumin as variables. The complicated malaria patients were obtained from Dr. Saiful Anwar Hospital Malang, whereas uncomplicated malaria patients were obtained from the Regency of Pleihari South Kalimantan. Plasma GSH and GSSG levels were determined by the spectrophotometer at the wave length of 412 nm, whereas the concentration of albumin was determined by bromocresol green method in the p H of 4.1.Results: There were no significant differences between the level of plasma GSH and GSSG in complicated and uncomplicated malaria patients, as well as the ratio of plasma GSH/GSSG in the two groups(P = 0.373; P = 0.538; and P = 0.615, respectively, independent ttest). In contrast, the plasma albumin concentration in complicated malaria patients were significantly higher than uncomplicated malaria patients(P = 0.000, Mann Whitney U test).Conclusions: It can be concluded that the average of plasma GSH and GSSG level, also plasma GSH/GSSG ratio in complicated malaria are not different from uncomplicated malaria. Although plasma concentration of albumin in both groups is below the normal range,there is an increase in complicated malaria that might be as compensation of oxidative stress.
基金Projects(51172050,51102060,51302050)supported by the National Natural Science Foundation of ChinaProject(HIT.ICRST.2010009)supported by the Fundamental Research Funds for Central Universities,ChinaProject(HIT.NSRIF.2014129)supported by the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology,China
文摘Alkali treatments with three concentrations were used to modify a microarc-oxidized(MAO) coating on titanium alloy surface in order to further improve its surface bioactivity. Morphology, chemical compositions and phase constitues, roughness, contact angle and apatite induction of the alkali-treated coatings were studied and compared. Scanning electron microscope(SEM) was applied to observe the morphologies, X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS) were used to detect the phase constitutes and chemical compositions, a surface topography profilometer was used to analyze the surface roughness, and contact angle was measured by liquid drop method. Alkali treatements result in the formation of Na2Ti6O13 and Na2Ti3O7 phase on the MAO coating, which leads to the increase of surface roughness and the decrease of contact angle. Experimental results showed that the apatite induction of the alkali-treated coatings was dependent on the applied alkali concentrations during treatments, and Na+concentration can promote the formation of apatite phase.
文摘OLAND(oxygen limited autotrophic nitrification and denitrification) nitrogen removal system was constructed by coupling with oxygen limited nitritation stage and anaerobic ammonium oxidation stage. Ammonia oxidizer, as a kind of key bacteria in N cycle, plays an important role at the oxygen limited nitritation stage of OLAND nitrogen removal system. In this study, specific amplification of 16S rDNA fragment of ammonia oxidizer by nested PCR, separation of mixed PCR samples by denaturing gradient gel electrophoresis(DGGE), and the quantification of ammonia oxidizer by fluorescence in situ hybridization(FISH) were combined to investigate the shifts of community composition and quantity of ammonia oxidizer of the oxygen limited nitritation stage in OLAND system. It showed that the community composition of ammonia oxidizer changed drastically when dissolved oxygen was decreased gradually, and the dominant ammonia oxidizer of the steady nitrite accumulation stage were completely different from that of the early stage of oxygen limited nitritation identified by DGGE . It was concluded that the Nitrosomonas may be the dominant genus of ammonia oxidizer at the oxygen limited nitritation stage of OLAND system characterized by nested PCR-DGGE and FISH, and the percentage of Nitrosomonas was 72.5% ±0.8% of ammonia oxidizer at the steady nitrite accumulation stage detected by FISH.
基金Project(2008BAB32B06) supported by the Key Projects in the National Science and Technology Pillar Program during the 11th Five-year Plan PeriodProject(2009ybfz20) supported by the Program for Excellent Doctor’s Degree Paper in Central South University,ChinaProject(1343/74333001114) supported by the Postgraduate’s Paper Innovation Fund of Hunan Province,China
文摘Six additives,i.e.,limestone,lime,magnesite,magnesia,dolomite and light-burned-dolomite,were added for investigating their influences on the pellet quality.For green balls,adding lime and light-burned-dolomite makes the wet drop strength decrease firstly,and then increase with further increase of additive dosage.Ca(OH)2 affects the bentonite properties at the beginning,but the binding property of Ca(OH)2 will be main when the dosage is higher.The other four additives decrease the drop strength for their disadvantageous physical properties.For preheated pellets,no mater what kind of additive is added,the compressive strength will be decreased because of unmineralized additives.For roasted pellets,calcium additives can form binding phase of calcium-ferrite,and suitable liquid phase will improve recrystallization of hematite,but excessive liquid will destroy the structure of pellets,so the compressive strength of pellet increases firstly and then drops.When adding magnesium additives,the strength will be decreased because of the oxidation of magnetite retarded by MgO.
基金supported by the National Natural Science Foundation of China(21707052)Jiangsu Agriculture Science and Technology Innovation Fund(CX(18)2025)+1 种基金Fundamental Research Funds for the Central Universities(JUSRP11905 and JUSRP51714B)Key Research and Development Program of Jiangsu Province(BE2017623)~~
文摘Oxidized nanoporous g-C3N4(PCNO)decorated with graphene oxide quantum dots(ox-GQDs)was successfully prepared by a facile self-assembly method.As co-catalysts,the ultrasmall zero-dimensional(0 D)ox-GQDs can achieve uniform dispersion on the surface/inner channels of PCNO,as well as intimate contact with PCNO through hydrogen bonding,π-π,and chemical bonding interactions.In contrast with PCNO,the ox-GQDs/PCNO composite photocatalysts possessed improved light-harvesting ability,higher charge-transfer efficiency,enhanced photooxidation capacity,and increased amounts of reactive species due to the upconversion properties,strong electron capturing ability,and peroxidase-like activity of the ox-GQDs.Therefore,the visible-light photocatalytic degradation and disinfection performances of the ox-GQDs/PCNO composite were significantly enhanced.Remarkably,the composite with a 0.2 wt.% deposited amount of ox-GQDs(ox-GQDs-0.2%/PCNO)exhibited optimum amaranth photodegradation activity,with a corresponding rate about 3.1 times as high as that of PCNO.In addition,ox-GQDs-0.2%/PCNO could inactivate about 99.6%of Escherichia coli(E.coli)cells after 4 h of visible light irradiation,whereas only^31.9% of E.coli cells were killed by PCNO.Furthermore,h+,·O2-,and·OH were determined to be the reactive species generated in the photocatalytic process of the ox-GQDs/PCNO system;these species can thoroughly mineralize azo dyes and effectively inactivate pathogenic bacteria.
基金State Key Clinical Specialty Construction Project,China
文摘Objective PERK/elF2/CHOP is a major signaling pathway mediating endoplasmic reticulum (ER) stress related with atherosclerosis. Oxidized LDL (ox-LDL) also induces endothelial apoptosis and plays a vital role in the initiation and progression of atherosclerosis. The present study was conducted to explore the regulatory effect of ox-LDL on PERK/elF2a/CHOP signaling pathway in vascular endothelial cells. Methods The effects of ox-LDL on PERK and p-elF2a protein expression of primary human umbilical vein endothelial cells (HUVECs) were investigated by Western blot analysis. PERK gene silencing and selective elF2a phosphatase inhibitor, salubrinal were used to inhibit the process of ox-LDL induced endothelial cell apoptosis, caspase-3 activity, and CHOP mRNA level. Results Ox-LDL treatment significantly increased the expression of PERK, PERK-mediated inactivation of elF2a phosphorylation, and the expression of CHOP, as well as the caspase-3 activity and apoptosis. The effects of ox-LDL were markedly decreased by knocking down PERK with stable transduction of lentiviral shRNA or by selective elF2a phosphatase inhibitor, salubrinal. Conclusion This study provides the first evidence that ox-LDL induces apoptosis in vascular endothelial cells mediated largely via the PERK/elF2a/CHOP ER-stress pathway. It adds new insights into the molecular mechanisms underlying the pathogenesis and progression of atherosclerosis.
基金Projects(51074206,51074040) supported by the National Natural Science Foundation of China
文摘The calcined magnesite was utilized as a kind of MgO bearing additive to produce MgO bearing pellets. The effects of MgO on densification and consolidation of pellets were investigated. The experimental results show that, at the same process parameters, the porosity and pore size distribution of green pellets have no evident relation with the MgO bearing additive, pore size of green pellets is between 15 μm and 35 μm and the porosity of green pellets is about 34%. There is a densification and consolidation phenomenon during the induration process; the pore size and porosity of product pellets decrease gradually; and the structure of product pellets becomes dense. MgO makes a negative effect on the densification and consolidation of product pellets, the densification ratio of pellets decreases from 46.3% to 28.6% with the addition of MgO bearing additive from 0 to 2.0 %. The porosity and the pore size of product pellets increase gradually with the increase of MgO content; When the mass fraction of MgO bearing additive increases from 0 to 2.0%, the pore size of product pellet increases and the pore size distributes in a large range. Also, the porosity increases from 18.61% to 24.06%.
基金supported by the National Natural Science Foundation of China,No.81971125(to ZYH).
文摘Oxidized low-density lipoprotein receptor 1(OLR1)is upregulated in neurons and participates in hypertension-induced neuronal apoptosis.OLR1 deletion exerts protective effects on cerebral damage induced by hypertensive-induced stroke.Therefore,OLR1 is likely involved in the progress of intracerebral hemorrhage.In this study,we examined the potential role of OLR1 in intracerebral hemorrhage using a rat model.OLR1 small interfering RNA(10μL;50 pmol/μL)was injected into the right basal ganglia to knock down OLR1.Twenty-four hours later,0.5 U collagenase type VII was injected to induce intracerebral hemorrhage.We found that knockdown of OLR1 attenuated neurological behavior impairment in rats with intracerebral hemorrhage and reduced hematoma,neuron loss,inflammatory reaction,and oxidative stress in rat brain tissue.We also found that silencing of OLR1 suppressed ferroptosis induced by intracerebral hemorrhage and the p38 signaling pathway.Therefore,silencing OLR1 exhibits protective effects against secondary injury of intracerebral hemorrhage.These findings suggest that OLR1 may be a novel potential therapeutic target for intracerebral hemorrhage.
基金This project was supported by a grant from Provincial Outstanding Youth Program for Henan Province Committee of Sciences and Technology (No. 19972002).
文摘The effects of oxidized low density lipoprotein (ox-LDL) on the proliferation of cultured human vascular smooth muscle cells (vSMC) were investigated in vitro. By using NaBr density gradient centrifugation, LDL was isolated and purified from human plasma. Ox-LDL was produced from LDL by being incubated with CuSO4. ox-LDL was then added to the culture medium at different concentrations (35, 60, 85, 110, 135 and 160μg/mL) for 7 days. The influence of ox-LDL on vSMC proliferation was observed in growth curve, mitosis index, and in situ determination of apoptosis. The data were analyzed with SPSS 10.0 software. The results showed that the ox-LDL produced in vitro had a good purity and optimal oxidative degree, which was similar to the intrinsic ox-LDL in atherosclerotic plaque, ox-LDL at a concentration of 35 μg/mL demonstrated the strongest proliferation inducement, and at a concentration of 135 μg/mL, ox-LDL could inhibit the growth of vSMC. ox-LDL at concentrations of 35 and 50 μg/mL presented powerful mitotic trigger, and with the increase of ox-LDL concentration, the mitotic index of vSMC was decreased gradually, ox-LDL at higher concentrations promoted more apoptotic vSMCs, ox-LDL at lower concentrations triggered proliferation of vSMCs, and at higher concentrations induced apoptosis in vSMCs, ox-LDL played a promotional role in the pathogenesis and development of atherosclerosis by affecting vSMC proliferation and apoptosis.
基金financially supported by the Key Program of the National Natural Science Foundation of China (No.U1360205)the Natural Science Foundation of Hebei Province of China (No.E2019209424)。
文摘The effects of SiO_(2) content on the preparation process and metallurgical properties of acid oxidized pellets, including compressive strength, reduction, and softening–melting behaviors, were systematically investigated.Mineralogical structures, elemental distribution, and pore size distribution were varied to analyze the mechanism of the effects.The results show that with an increase in SiO_(2) content from 3.51 wt%to 7.18 wt%, compressive strength decreases from 3150 N/pellet to 2100 N/pellet and reducibility decreases from 76.5% to 71.4%.The microstructure showed that pellets with high SiO_(2) content contained more magnetite in the mineralogical structures.Additionally, some liquid phases appeared, which hindered the continuous crystallization of hematite.Also, the softening–melting properties of the pellets clearly deteriorated as the SiO_(2) content increased.With increasing SiO_(2) content, the temperature range of the softening–melting zone decreased, and the maximum differential pressure and the comprehensive permeability index increased significantly.When acid oxidized pellets are used as the raw materials for blast furnace smelting, it should be combined with high basicity sinters to improve the softening–melting behaviors of the comprehensive charge.
基金Project(51404005)supported by the National Natural Science Foundation of China
文摘It is of great importance to elucidate reduction swelling behaviors and reaction mechanism of oxidized pellet in hydrogen-enriched atmosphere under coke oven gas injection. In this work, the effects of hydrogen concentration in N_2-CO-H_2 atmosphere with unchanged CO content on reduction swelling behaviors of oxidized pellet at 1173 K were studied, to clarify the mechanism of hydrogen-enriched reduction and exclude the influences of CO. Then, the reduction swelling behaviors of oxidized pellet at 1173 K in actual atmosphere under coke oven gas(COG) injection, got from the simulation results of multi-fluid blast furnace model, were investigated. The results show that with the concentration of hydrogen increasing in N_2-CO-H_2 gas from 2% to 18%, the reduction swelling index of pellet decreases from 10.12% to 5.57% while the reduction ratio of pellet increases obviously from 39.85% to 69.58%. In addition, with COG injection rate increasing from 0 to 152.34 m^3/t, the reduction swelling index of pellet decreases slightly from 10.71% to 9.54% while the reduction ratio of pellet is increased from 31.57% to 36.39%. The microstructures of pellet are transformed from the platy structure to the flocculent structure.