In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl gro...In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl groups, including 2-(2-methoxyphenoxy)-1-phenylethanone, 2-(2-methoxyphenoxy)-1-phenylethanol, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanol have been selected and their electrochemical properties have been studied experimentally by cyclic voltammetry, and FT-IR spectroelectrochemistry. Combining with electrolysis products distribution analysis and density functional theory calculations, oxidation mechanisms of all six model dimers have been explored. In particular, a total effect from substituents of both para-methoxy(on the aryl ring closing to Cα) and Cα-OH on the oxidation mechanisms has been clearly observed, showing a significant selectivity on the Cα-Cβbond cleavage induced by electrochemical oxidations.展开更多
Transition metal chalcogenides(TMCs)are recognized as pre-catalysts,and their(oxy)hydroxides derived from electrochemical reconstruction are the active species in the water oxidation.However,understanding the role of ...Transition metal chalcogenides(TMCs)are recognized as pre-catalysts,and their(oxy)hydroxides derived from electrochemical reconstruction are the active species in the water oxidation.However,understanding the role of the residual chalcogen in the reconstructed layer is lacking in detail,and the corresponding catalytic mechanism remains controversial.Here,taking Cu_(1-x)Co_(x)S as a platform,we explore the regulating effect and existence form of the residual S doped into the reconstructive layer for oxygen evolution reaction(OER),where a dual-path OER mechanism is proposed.First-principles calculations and operando~(18)O isotopic labeling experiments jointly reveal that the residual S in the reconstructive layer of Cu_(1-x)Co_(x)S can wisely balance the adsorbate evolution mechanism(AEM)and lattice oxygen oxidation mechanism(LOM)by activating lattice oxygen and optimizing the adsorption/desorption behaviors at metal active sites,rather than change the reaction mechanism from AEM to LOM.Following such a dual-path OER mechanism,Cu_(0.4)Co_(0.6)S-derived Cu_(0.4)Co_(0.6)OSH not only overcomes the restriction of linear scaling relationship in AEM,but also avoids the structural collapse caused by lattice oxygen migration in LOM,so as to greatly reduce the OER potential and improved stability.展开更多
The oxidation behavior of ferrovanadium spinel(FeV_(2)O_(4)),synthesized via high-temperature solid-state reaction,was investigated using thermogravimetry,X-ray diffractometry,and X-ray photoelectron spectroscopy over...The oxidation behavior of ferrovanadium spinel(FeV_(2)O_(4)),synthesized via high-temperature solid-state reaction,was investigated using thermogravimetry,X-ray diffractometry,and X-ray photoelectron spectroscopy over the temperature range of 450–700℃.The results revealed that the oxidation process of FeV_(2)O_(4)can be divided into three stages with the second stage being responsible for maximum weight gain due to oxidation.Three classical methods were employed to analyze the reaction mechanisms and model functions for distinct oxidation stages.The random nucleation and subsequent growth(A_(3))kinetic model was found to be applicable to both initial and secondary stage.The third stage of oxidation was consistent with the three-dimensional diffusion,spherical symmetry(D_(3))kinetic mode.Both the model-function method and the model-free method were utilized to investigate the apparent activation energy of the oxidation reaction at each stage.It was found that the intermediates including Fe_(3)O_(4),VO_(2),V_(2)O_(3),and Fe_(2.5)V_(7.11)O_(16),played significant roles in the oxidation process prior to the final formation of FeVO_(4)and V_(2)O_(5)through oxidation of FeV_(2)O_(4).展开更多
Resin-bonded Al-SiC composite was sintered at 1100,1300,and 1500℃ in the air,the oxidation mechanism was investigated.The reaction models were also established.The oxidation resistance of the Al-SiC composite was sig...Resin-bonded Al-SiC composite was sintered at 1100,1300,and 1500℃ in the air,the oxidation mechanism was investigated.The reaction models were also established.The oxidation resistance of the Al-SiC composite was significantly enhanced with temperature increase.SiC in the exterior of the composite was partially oxidized slightly,while the transformation of metastable Al_(4)C_(3) to stable Al_(4)SiC_(4) existed in the interior.At 1100℃,Al in the interior reacted with residual C to form Al_(4)C_(3).With increasing to 1300℃,high temperature and low oxygen partial pressure lead to active oxidation of SiC,and internal gas composition transforms to Al_(2)O(g)+CO(g)+SiO(g)as the reaction proceeds.After Al_(4)C_(3) is formed,CO(g)and SiO(g)are continuously deposited on its surface,transforming to Al_(4)SiC_(4).At 1500℃,a dense layer consisting of SiC and Al_(4)SiC_(4) whiskers is formed which cuts off the diffusion channel of oxygen.The active oxidation of SiC is accelerated,enabling more gas to participate in the synthesis of Al_(4)SiC_(4),eventually forming hexagonal lamellar Al_(4)SiC_(4) with mutual accumulation between SiC particles.Introducing Al enhances the oxidation resistance of SiC.In addition,the in situ generated non-oxide is uniformly dispersed on a micro-scale and bonds SiC stably.展开更多
Water electrolysis,a process for producing green hydrogen from renewable energy,plays a crucial role in the transition toward a sustainable energy landscape and the realization of the hydrogen economy.Oxygen evolution...Water electrolysis,a process for producing green hydrogen from renewable energy,plays a crucial role in the transition toward a sustainable energy landscape and the realization of the hydrogen economy.Oxygen evolution reaction(OER)is a critical step in water electrolysis and is often limited by its slow kinetics.Two main mechanisms,namely the adsorbate evolution mechanism(AEM)and lattice oxygen oxidation mechanism(LOM),are commonly considered in the context of OER.However,designing efficient catalysts based on either the AEM or the LOM remains a topic of debate,and there is no consensus on whether activity and stability are directly related to a certain mechanism.Considering the above,we discuss the characteristics,advantages,and disadvantages of AEM and LOM.Additionally,we provide insights on leveraging the LOM to develop highly active and stable OER catalysts in future.For instance,it is essential to accurately differentiate between reversible and irreversible lattice oxygen redox reactions to elucidate the LOM.Furthermore,we discuss strategies for effectively activating lattice oxygen to achieve controllable steady-state exchange between lattice oxygen and an electrolyte(OH^(-)or H_(2)O).Additionally,we discuss the use of in situ characterization techniques and theoretical calculations as promising avenues for further elucidating the LOM.展开更多
Conventional mechanical machining of a composite material comprising an aluminum matrix reinforced with a high volume fraction of SiC particles(hereinafter referred to as an SiCp/Al composite)faces problems such as ra...Conventional mechanical machining of a composite material comprising an aluminum matrix reinforced with a high volume fraction of SiC particles(hereinafter referred to as an SiCp/Al composite)faces problems such as rapid tool wear,high specific cutting force,and poor surface integrity.Instead,a promising method for solving these problems is laser-induced oxidation-assisted milling(LOAM):under laser irradiation,the local workpiece material reacts with oxygen,thus forming loose and porous oxides that are easily removed.In the present work,the oxidation mechanism of SiCp/Al irradiated by a nanosecond pulsed laser is studied to better understand the laser-induced oxidation behavior and control the characteristics of the oxides,with laser irradiation experiments performed on a 65%SiCp/Al composite with various laser parameters and auxiliary gases(oxygen,nitrogen,and argon).With increasing laser pulse energy density,both the ablated groove depth and the width of the heat-affected zone increase.When oxygen is used as the auxiliary gas,an oxide layer composed of SiO_(2)and Al2O3 forms,and CO_(2)is produced and escapes from the material,thereby forming pores in the oxides.However,when nitrogen or argon is used as the auxiliary gas,a recast layer is produced that is relatively difficult to remove.Under laser irradiation,the sputtered material reacts with oxygen to form oxides on both sides of the ablated groove,and as the laser scanning path advances,the produced oxides accumulate to form an oxide layer.LOAM and conventional milling are compared using the same milling parameters,and LOAM is found to be better for reduced milling force and tool wear and improved machined surface quality.展开更多
A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isotherm...A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isothermal experiments. As a result of the competitive diffusion of alloying elements, the oxide scale included an outermost porous oxide layer (OOL), an inner relatively dense oxide layer (IOL), and an internal oxide zone (IOZ), depending on the temperature and time. A high temperature led to the formation of large voids at the IOL/IOZ interface. At 1200℃, the continuity of the Cr-rich oxide layer in the IOL was destroyed, and thus, spallation occurred. Extension of oxidation time contributed to the size of Al-rich oxide particles with the increase in the IOZ. Based on this finding,the oxidation kinetics of GH4738 was discussed, and the corresponding oxidation behavior at 900-1100℃ was predicted.展开更多
Phase transitions, morphology changes, and oxidation mechanism of the ilmenite oxidation process were investigated. FeTi03 transforms to hematite and rutile when oxidation at 700-800 ℃, and pseudobrookite is formed w...Phase transitions, morphology changes, and oxidation mechanism of the ilmenite oxidation process were investigated. FeTi03 transforms to hematite and rutile when oxidation at 700-800 ℃, and pseudobrookite is formed when the oxidation temperature reaches 900 ℃. The initial ilmenite powder exhibits paramagnetism; however, after being oxidized at the intermediate temperature (800-850 ℃), the oxidation product exhibits weak ferromagnetism. The oxidation mechanism was discussed. The microstructure observations show that a lot of micro-pores emerge on the surfaces of ilmenite particles at the intermediate temperature, which is deemed to be caoable ofenhancin~ the mass transfer ofoxgen during oxidation.展开更多
Phytosterol esters can effectively decrease serum cholesterol concentration in the human body and prevent cardio-cerebrovascular diseases.It was found that phytosterol esters exhibited better solubility and bioavailab...Phytosterol esters can effectively decrease serum cholesterol concentration in the human body and prevent cardio-cerebrovascular diseases.It was found that phytosterol esters exhibited better solubility and bioavailability than free phytosterols.In recent years,phytosterol esters have attracted increasing attention.However,during food processing,phytosterol esters are susceptible to degradation at high temperatures,resulting in certain losses and formation of potentially harmful substances for humans.This paper reviews the relevant literatures and updates on the thermal oxidation stability of phytosterol esters in recent years from the following aspects:(i)Sources,physiological activities,and applications of phytosterol esters;(ii)Oxidation mechanism of phytosterol esters;(iii)Effects of phytosterols species,the volume of addition,food matrix,heating temperature and time,and antioxidants on the thermal loss and oxidation stability of phytosterol esters.The research progress on the safety of phytosterol esters is also discussed in detail.Additionally,the prospects for future research are highlighted.展开更多
High-temperature oxidation is a common failure in high-temperature environments,which widely occur in aircraft engines and aerospace thrusters;as a result,the development of anti-high-temperature oxidation materials h...High-temperature oxidation is a common failure in high-temperature environments,which widely occur in aircraft engines and aerospace thrusters;as a result,the development of anti-high-temperature oxidation materials has been pursued.Ni-based alloys are a common high-temperature material;however,they are too expensive.High-entropy alloys are alternatives for the anti-oxidation property at high temperatures because of their special structure and properties.The recent achievements of high-temperature oxidation are reviewed in this paper.The high-temperature oxidation environment,temperature,phase structure,alloy elements,and preparation methods of high-entropy alloys are summarized.The reason why high-entropy alloys have anti-oxidation ability at high temperatures is illuminated.Current research,material selection,and application prospects of high-temperature oxidation are introduced.展开更多
The oxidation of carbon nanotubes, C60 and graphite was studied by thermogravimetric (TG) analysis and differential thermal analysis (DTA) technique, and the oxidation kinetic models of three carbon materials studied ...The oxidation of carbon nanotubes, C60 and graphite was studied by thermogravimetric (TG) analysis and differential thermal analysis (DTA) technique, and the oxidation kinetic models of three carbon materials studied were analyzed by mechanism-function method. The results indicate that three carbon species adopt different oxidation mechanisms due to their different structures. The oxidation of carbon nanotubes with cylindrical structure follows contracting volume reaction mechanism [R3 mechanism, 1- (1- α)^1/3 = kt], indicating that the oxidation of carbon nanotubes takes place from the ends to the center. For graphite with planar sandwich structure, the oxidation starts at the edges initially and gradually moves toward the center, which corresponds to contracting area phase boundary reaction mechanism [R2 mechanism, 1 - (1 - α)^1/2 = kt]. The oxidation of C60 with spherical structure, however, is complex and apparently cannot be illustrated with a single kinetic model. The values of apparent activation energy obtained by the mechanism-function method are (145 ± 5) kJ·mol^-1 for carbon nanotubes and (193 ± 7) kJ·mol^-1 for graphite, respectively, while the value of apparent activation energy for C60 determined using Kissinger method is 91 kJ·mol^-1。展开更多
Fume suppression mechanisms and the effect of expanded graphite on the performance of asphalt were studied by applying infrared spectroscopy(FT-IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and ...Fume suppression mechanisms and the effect of expanded graphite on the performance of asphalt were studied by applying infrared spectroscopy(FT-IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and comprehensive thermal analysis(TG, DSC). The experimental results confirm that asphalt which is mixed with expandable graphite will expand in the process of hot mix, and the expanded graphite layer will swell by the light component in the asphalt. The light component in the asphalt and PAHs adsorption on expanded graphite surface or part of the plug in the expanded graphite layer between plates made nucleation crystallization growth. And the Van der Waals force and the bonding of the lattice can effectively restrain the asphalt fume release. Meanwhile, the expanding agent with oxidative can spread into the asphalt, leading to asphalt oxygenated and plastic abate, while the ductility decreases. Expanded graphite, SBS modifier and environment- friendly plasticizers are used to composite modified asphalt. According to asphalt fume release experiment, normal test of asphalt performance, Brookfield viscosity test, RTFOT test and asphalt mixture tests(high temperature stability, low temperature stability, water stability), it has been proven that the modified asphalt’s performance is better than that of matrix asphalt and equivalent to that of SBS modified asphalt. Furthermore, it has good fume suppression effect.展开更多
Alachlor is used widely as a herbicide,but is an environmental endocrine disruptor. O 3/H 2O 2 system is used as catalyst to delve on the degradation efficiency of alachlor. The amount of the catalyst H 2O 2,the pH va...Alachlor is used widely as a herbicide,but is an environmental endocrine disruptor. O 3/H 2O 2 system is used as catalyst to delve on the degradation efficiency of alachlor. The amount of the catalyst H 2O 2,the pH value of the soluble, the temperature and quality of water sample are changed to investigate the effect of these factors on the degradation of alachlor. The degradation of alachlor is qualitatively analyzed through their GS MS spectra and the possible mechanism of the degradation of alachlor is discussed as well.展开更多
Food provides abundant nutrients for human beings, but also has sensory functions and physiological regulation.Lipids are the main components of food as well as the important structural and functional components of ce...Food provides abundant nutrients for human beings, but also has sensory functions and physiological regulation.Lipids are the main components of food as well as the important structural and functional components of cells.Nevertheless, lipids are easily oxidized by different ways, such as thermal oxidation and air oxidation. Lipidoxidation has adverse effects on food quality and human health. Therefore, efforts should be made to reduce lipidoxidation and improve its stability. This review focuses on important knowledge about lipid oxidation, includingthe concept of lipids and lipid oxidation, the main pathways and mechanisms of lipid oxidation, factors affectinglipid oxidation, strategies to improve the stability of lipid oxidation, and the recent research progress of lipidoxidation in food science and nutritional health.展开更多
TiO_(2)has demonstrated outstanding performance in electrochemical advanced oxidation processes(EAOPs)due to its structural stability and high oxygen overpotential.However,there is still much room for improving its el...TiO_(2)has demonstrated outstanding performance in electrochemical advanced oxidation processes(EAOPs)due to its structural stability and high oxygen overpotential.However,there is still much room for improving its electrochemical activity.Herein,narrow bandgap manganese oxide(MnO_(x))was composited with TiO_(2)nanotube arrays(TiO_(2)NTAs)that in-situ oxidized on porous Ti sponge,forming the MnO_(x)-TiO_(2)NTAs anode.XANES and XPS analysis further proved that the composition of MnO_(x)is Mn2O3.Electrochemical characterizations revealed that increasing the composited concentration of MnO_(x)can improve the conductivity and reduce oxygen evolution potential so as to improve the electrochemical activity of the composited MnO_(x)-TiO_(2)NTAs anode.Meanwhile,the optimal degradation rate of benzoic acid(BA)was achieved using MnO_(x)-TiO_(2)NTAs with a MnO_(x)concentration of 0.1 mmol L^(-1),and the role of MnO_(x)was proposed based on DFT calculation.Additionally,the required electrical energy(EE/O)to destroy BA was optimized by varying the composited concentration of MnO_(x)and the degradation voltage.These quantitative results are of great significance for the design and application of high-performance materials for EAOPs.展开更多
For a climate-neutral future mobility,the socalled e-fuels can play an essential part.Especially,oxygenated e-fuels containing oxygen in their chemical formula have the additional potential to burn with significantly ...For a climate-neutral future mobility,the socalled e-fuels can play an essential part.Especially,oxygenated e-fuels containing oxygen in their chemical formula have the additional potential to burn with significantly lower soot levels.In particular,polyoxymethylene dimethyl ethers or oxymethylene ethers(PODEs or OMEs)do not contain carbon-carbon bonds,prohibiting the production of soot precursors like acetylene(C_(2)H_(2)).These properties make OMEs a highly interesting candidate for future climate-neutral compression-ignition engines.However,to fully leverage their potential,the auto-ignition process,flame propagation,and mixing regimes of the combustion need to be understood.To achieve this,efficient oxidation mechanisms suitable for computational fluid dynamics(CFD)calculations must be developed and validated.The present work aims to highlight the improvements made by developing an adapted oxidation mechanism for OME1-6 and introducing it into a validated spray combustion CFD model for OMEs.The simulations were conducted for single-and multi-injection patterns,changing ambient temperatures,and oxygen contents.The results were validated against high-pressure and high-temperature constantpressure chamber experiments.OH*-chemiluminescence measurements accomplished the characterization of the auto-ignition process.Both experiments and simulations were conducted for two different injectors.Significant improvements concerning the prediction of the ignition delay time were accomplished while also retaining an excellent agreement for the flame lift-off length.The spatial zones of high-temperature reaction activity were also affected by the adaption of the reaction kinetics.They showed a greater tendency to form OH^(*) radicals within the center of the spray in accordance with the experiments.展开更多
To improve the oxidation resistance of short carbon fiber(C_(sf))-reinforced mechanically alloyed SiBCN(MA-SiBCN)(C_(sf)/MA-SiBCN)composites,dense amorphous C_(sf)/SiBCN composites containing both MA-SiBCN and polymer...To improve the oxidation resistance of short carbon fiber(C_(sf))-reinforced mechanically alloyed SiBCN(MA-SiBCN)(C_(sf)/MA-SiBCN)composites,dense amorphous C_(sf)/SiBCN composites containing both MA-SiBCN and polymer-derived ceramics SiBCN(PDCs-SiBCN)were prepared by repeated polymer infiltration and pyrolysis(PIP)of layered C_(sf)/MA-SiBCN composites at 1100℃,and the oxidation behavior and damage mechanism of the as-prepared C_(sf)/SiBCN at 1300–1600℃ were compared and discussed with those of C_(sf)/MA-SiBCN.The C_(sf)/MA-SiBCN composites resist oxidation attack up to 1400℃ but fail at 1500℃ due to the collapse of the porous framework,while the PIP-densified C_(sf)/SiBCN composites are resistant to static air up to 1600℃.During oxidation,oxygen diffuses through preexisting pores and the pores left by oxidation of carbon fibers and pyrolytic carbon(PyC)to the interior of the matrix.Owing to the oxidative coupling effect of the MA-SiBCN and PDCs-SiBCN matrices,a relatively continuous and dense oxide layer is formed on the sample surface,and the interfacial region between the oxide layer and the matrix of the as-prepared composite contains an amorphous glassy structure mainly consisting of Si and O and an incompletely oxidized but partially crystallized matrix,which is primarily responsible for improving the oxidation resistance.展开更多
Ni-La2O3/CeO2 composite films were prepared by electrodeposition from a nickel sulfate bath containing certain content of micrometer and nanometer La2O3/CeO2 particles. The effect of La2O3 or CeO2 particle size on the...Ni-La2O3/CeO2 composite films were prepared by electrodeposition from a nickel sulfate bath containing certain content of micrometer and nanometer La2O3/CeO2 particles. The effect of La2O3 or CeO2 particle size on the oxidation resistance of the electrodeposited Ni-La2O3/CeO2 composites in air at 1000 °C was studied. The results indicate that, compared with the electrodeposited Ni-film, Ni-La2O3/CeO2 composites exhibit a superior oxidation resistance due to the codeposited La2O3 or CeO2 particles blocking the outward diffusion of nickel. Moreover, compared with nanoparticles, La2O3 or CeO2 microparticles have stronger effect because La2O3 or CeO2 microparticles also act as a diffusion barrier layer at the onset of oxidation.展开更多
Catalytic oxidation is regarded as one of the most promising strategies for volatile organic compounds(VOCs)purification.Mixed metal oxides(MMOs),after topological transformation using layered double hydroxides(LDHs)a...Catalytic oxidation is regarded as one of the most promising strategies for volatile organic compounds(VOCs)purification.Mixed metal oxides(MMOs),after topological transformation using layered double hydroxides(LDHs)as precursors,are extensively used as catalysts for VOCs oxidation due to their uniformity advantage.This review summarizes the developments in the LDH-derived VOCs heterogeneous catalytic oxidation over the last 10 years.Particularly,it addresses the VOCs abatement performance over MMO,noble metal/MMO,core-shell structured MMO,and integral MMO film catalysts originating from LDHs.Moreover,it highlights the water vapor effect and oxidation mechanism.This review indicates that LDH-based catalysts are a category of important VOCs oxidation materials.展开更多
基金The authors gratefully acknowledge the financial support of the Natural Science Foundation of China,China(Grant No.21975082 and 21736003)the Guangdong Basic and Applied Basic Research Foundation(Grant Number:2019A1515011472 and 2022A1515011341)the Science and Technology Program of Guangzhou(Grant Number:202102080479).
文摘In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl groups, including 2-(2-methoxyphenoxy)-1-phenylethanone, 2-(2-methoxyphenoxy)-1-phenylethanol, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanol have been selected and their electrochemical properties have been studied experimentally by cyclic voltammetry, and FT-IR spectroelectrochemistry. Combining with electrolysis products distribution analysis and density functional theory calculations, oxidation mechanisms of all six model dimers have been explored. In particular, a total effect from substituents of both para-methoxy(on the aryl ring closing to Cα) and Cα-OH on the oxidation mechanisms has been clearly observed, showing a significant selectivity on the Cα-Cβbond cleavage induced by electrochemical oxidations.
基金supported by the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202200550)the Natural Science Foundation Joint Fund for Innovation and Development of Chongqing Municipal Education Commission(CSTB2022NSCQ-LZX0077)+4 种基金the National Natural Science Foundation of China(No.52100065)the Science and Technology Research Program of Natural Science Foundation of Chongqing(cstc2021ycjh-bgzxm0037)the Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-M202200503)the Chongqing Innovation Research Group Project(No.CXQT21015)the Doctor Start/Talent Introduction Program of Chongqing Normal University(No.02060404/2020009000321)。
文摘Transition metal chalcogenides(TMCs)are recognized as pre-catalysts,and their(oxy)hydroxides derived from electrochemical reconstruction are the active species in the water oxidation.However,understanding the role of the residual chalcogen in the reconstructed layer is lacking in detail,and the corresponding catalytic mechanism remains controversial.Here,taking Cu_(1-x)Co_(x)S as a platform,we explore the regulating effect and existence form of the residual S doped into the reconstructive layer for oxygen evolution reaction(OER),where a dual-path OER mechanism is proposed.First-principles calculations and operando~(18)O isotopic labeling experiments jointly reveal that the residual S in the reconstructive layer of Cu_(1-x)Co_(x)S can wisely balance the adsorbate evolution mechanism(AEM)and lattice oxygen oxidation mechanism(LOM)by activating lattice oxygen and optimizing the adsorption/desorption behaviors at metal active sites,rather than change the reaction mechanism from AEM to LOM.Following such a dual-path OER mechanism,Cu_(0.4)Co_(0.6)S-derived Cu_(0.4)Co_(0.6)OSH not only overcomes the restriction of linear scaling relationship in AEM,but also avoids the structural collapse caused by lattice oxygen migration in LOM,so as to greatly reduce the OER potential and improved stability.
基金Project(cstb2022nscq-msx0801)supported by the Natural Science Foundation of Chongqing,ChinaProject(52004044)supported by the National Natural Science Foundation of China+2 种基金Project(ckrc2022030)supported by the Foundation of Chongqing University of Science and Technology,ChinaProject(YKJCX2220216)supported by the Graduate Research Innovation Project of Chongqing University of Science and Technology,ChinaProject(202311551007)supported by the National Undergraduate Training Program for Innovation and Entrepreneurship,China。
文摘The oxidation behavior of ferrovanadium spinel(FeV_(2)O_(4)),synthesized via high-temperature solid-state reaction,was investigated using thermogravimetry,X-ray diffractometry,and X-ray photoelectron spectroscopy over the temperature range of 450–700℃.The results revealed that the oxidation process of FeV_(2)O_(4)can be divided into three stages with the second stage being responsible for maximum weight gain due to oxidation.Three classical methods were employed to analyze the reaction mechanisms and model functions for distinct oxidation stages.The random nucleation and subsequent growth(A_(3))kinetic model was found to be applicable to both initial and secondary stage.The third stage of oxidation was consistent with the three-dimensional diffusion,spherical symmetry(D_(3))kinetic mode.Both the model-function method and the model-free method were utilized to investigate the apparent activation energy of the oxidation reaction at each stage.It was found that the intermediates including Fe_(3)O_(4),VO_(2),V_(2)O_(3),and Fe_(2.5)V_(7.11)O_(16),played significant roles in the oxidation process prior to the final formation of FeVO_(4)and V_(2)O_(5)through oxidation of FeV_(2)O_(4).
基金supported by the National Key Research and Development Program of China(No.2021YFB3701400).
文摘Resin-bonded Al-SiC composite was sintered at 1100,1300,and 1500℃ in the air,the oxidation mechanism was investigated.The reaction models were also established.The oxidation resistance of the Al-SiC composite was significantly enhanced with temperature increase.SiC in the exterior of the composite was partially oxidized slightly,while the transformation of metastable Al_(4)C_(3) to stable Al_(4)SiC_(4) existed in the interior.At 1100℃,Al in the interior reacted with residual C to form Al_(4)C_(3).With increasing to 1300℃,high temperature and low oxygen partial pressure lead to active oxidation of SiC,and internal gas composition transforms to Al_(2)O(g)+CO(g)+SiO(g)as the reaction proceeds.After Al_(4)C_(3) is formed,CO(g)and SiO(g)are continuously deposited on its surface,transforming to Al_(4)SiC_(4).At 1500℃,a dense layer consisting of SiC and Al_(4)SiC_(4) whiskers is formed which cuts off the diffusion channel of oxygen.The active oxidation of SiC is accelerated,enabling more gas to participate in the synthesis of Al_(4)SiC_(4),eventually forming hexagonal lamellar Al_(4)SiC_(4) with mutual accumulation between SiC particles.Introducing Al enhances the oxidation resistance of SiC.In addition,the in situ generated non-oxide is uniformly dispersed on a micro-scale and bonds SiC stably.
基金the support from the National Key R&D Program of China(2020YFA0710000)the National Natural Science Foundation of China(Nos.22008170,22278307,22222808,21978200)+1 种基金the Haihe Laboratory of Sustainable Chemical Transformationsthe Tianjin Research Innovation Project for Postgraduate Students(2022B KYZ035)。
文摘Water electrolysis,a process for producing green hydrogen from renewable energy,plays a crucial role in the transition toward a sustainable energy landscape and the realization of the hydrogen economy.Oxygen evolution reaction(OER)is a critical step in water electrolysis and is often limited by its slow kinetics.Two main mechanisms,namely the adsorbate evolution mechanism(AEM)and lattice oxygen oxidation mechanism(LOM),are commonly considered in the context of OER.However,designing efficient catalysts based on either the AEM or the LOM remains a topic of debate,and there is no consensus on whether activity and stability are directly related to a certain mechanism.Considering the above,we discuss the characteristics,advantages,and disadvantages of AEM and LOM.Additionally,we provide insights on leveraging the LOM to develop highly active and stable OER catalysts in future.For instance,it is essential to accurately differentiate between reversible and irreversible lattice oxygen redox reactions to elucidate the LOM.Furthermore,we discuss strategies for effectively activating lattice oxygen to achieve controllable steady-state exchange between lattice oxygen and an electrolyte(OH^(-)or H_(2)O).Additionally,we discuss the use of in situ characterization techniques and theoretical calculations as promising avenues for further elucidating the LOM.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.NT2021020)。
文摘Conventional mechanical machining of a composite material comprising an aluminum matrix reinforced with a high volume fraction of SiC particles(hereinafter referred to as an SiCp/Al composite)faces problems such as rapid tool wear,high specific cutting force,and poor surface integrity.Instead,a promising method for solving these problems is laser-induced oxidation-assisted milling(LOAM):under laser irradiation,the local workpiece material reacts with oxygen,thus forming loose and porous oxides that are easily removed.In the present work,the oxidation mechanism of SiCp/Al irradiated by a nanosecond pulsed laser is studied to better understand the laser-induced oxidation behavior and control the characteristics of the oxides,with laser irradiation experiments performed on a 65%SiCp/Al composite with various laser parameters and auxiliary gases(oxygen,nitrogen,and argon).With increasing laser pulse energy density,both the ablated groove depth and the width of the heat-affected zone increase.When oxygen is used as the auxiliary gas,an oxide layer composed of SiO_(2)and Al2O3 forms,and CO_(2)is produced and escapes from the material,thereby forming pores in the oxides.However,when nitrogen or argon is used as the auxiliary gas,a recast layer is produced that is relatively difficult to remove.Under laser irradiation,the sputtered material reacts with oxygen to form oxides on both sides of the ablated groove,and as the laser scanning path advances,the produced oxides accumulate to form an oxide layer.LOAM and conventional milling are compared using the same milling parameters,and LOAM is found to be better for reduced milling force and tool wear and improved machined surface quality.
基金financially supported by the National Key R&D Program of China (No.2021YFB3700400)the National Natural Science Foundation of China (Nos.52074030,51904021,and 52174294)。
文摘A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isothermal experiments. As a result of the competitive diffusion of alloying elements, the oxide scale included an outermost porous oxide layer (OOL), an inner relatively dense oxide layer (IOL), and an internal oxide zone (IOZ), depending on the temperature and time. A high temperature led to the formation of large voids at the IOL/IOZ interface. At 1200℃, the continuity of the Cr-rich oxide layer in the IOL was destroyed, and thus, spallation occurred. Extension of oxidation time contributed to the size of Al-rich oxide particles with the increase in the IOZ. Based on this finding,the oxidation kinetics of GH4738 was discussed, and the corresponding oxidation behavior at 900-1100℃ was predicted.
基金Project(51074105) supported by the National Natural Science Foundation of ChinaProject(51225401) supported by the China National Funds for Distinguished Young Scientists
文摘Phase transitions, morphology changes, and oxidation mechanism of the ilmenite oxidation process were investigated. FeTi03 transforms to hematite and rutile when oxidation at 700-800 ℃, and pseudobrookite is formed when the oxidation temperature reaches 900 ℃. The initial ilmenite powder exhibits paramagnetism; however, after being oxidized at the intermediate temperature (800-850 ℃), the oxidation product exhibits weak ferromagnetism. The oxidation mechanism was discussed. The microstructure observations show that a lot of micro-pores emerge on the surfaces of ilmenite particles at the intermediate temperature, which is deemed to be caoable ofenhancin~ the mass transfer ofoxgen during oxidation.
基金The authors sincerely acknowledge the financial support from the basic research project of the key scientific research projects of colleges and universities in Henan Province(21zx010).
文摘Phytosterol esters can effectively decrease serum cholesterol concentration in the human body and prevent cardio-cerebrovascular diseases.It was found that phytosterol esters exhibited better solubility and bioavailability than free phytosterols.In recent years,phytosterol esters have attracted increasing attention.However,during food processing,phytosterol esters are susceptible to degradation at high temperatures,resulting in certain losses and formation of potentially harmful substances for humans.This paper reviews the relevant literatures and updates on the thermal oxidation stability of phytosterol esters in recent years from the following aspects:(i)Sources,physiological activities,and applications of phytosterol esters;(ii)Oxidation mechanism of phytosterol esters;(iii)Effects of phytosterols species,the volume of addition,food matrix,heating temperature and time,and antioxidants on the thermal loss and oxidation stability of phytosterol esters.The research progress on the safety of phytosterol esters is also discussed in detail.Additionally,the prospects for future research are highlighted.
基金This work was financially supported by the National Natural Science Foundation of China(No.52071014)the Fundamental Research Funds for the Central Universities(No.FRF-GF-19-033BZ)the National Key Research and Development Program of China(No.2020YFB0704501).
文摘High-temperature oxidation is a common failure in high-temperature environments,which widely occur in aircraft engines and aerospace thrusters;as a result,the development of anti-high-temperature oxidation materials has been pursued.Ni-based alloys are a common high-temperature material;however,they are too expensive.High-entropy alloys are alternatives for the anti-oxidation property at high temperatures because of their special structure and properties.The recent achievements of high-temperature oxidation are reviewed in this paper.The high-temperature oxidation environment,temperature,phase structure,alloy elements,and preparation methods of high-entropy alloys are summarized.The reason why high-entropy alloys have anti-oxidation ability at high temperatures is illuminated.Current research,material selection,and application prospects of high-temperature oxidation are introduced.
基金Supported by the Natural Science Foundation of Zhejiang Province (No. 500105).
文摘The oxidation of carbon nanotubes, C60 and graphite was studied by thermogravimetric (TG) analysis and differential thermal analysis (DTA) technique, and the oxidation kinetic models of three carbon materials studied were analyzed by mechanism-function method. The results indicate that three carbon species adopt different oxidation mechanisms due to their different structures. The oxidation of carbon nanotubes with cylindrical structure follows contracting volume reaction mechanism [R3 mechanism, 1- (1- α)^1/3 = kt], indicating that the oxidation of carbon nanotubes takes place from the ends to the center. For graphite with planar sandwich structure, the oxidation starts at the edges initially and gradually moves toward the center, which corresponds to contracting area phase boundary reaction mechanism [R2 mechanism, 1 - (1 - α)^1/2 = kt]. The oxidation of C60 with spherical structure, however, is complex and apparently cannot be illustrated with a single kinetic model. The values of apparent activation energy obtained by the mechanism-function method are (145 ± 5) kJ·mol^-1 for carbon nanotubes and (193 ± 7) kJ·mol^-1 for graphite, respectively, while the value of apparent activation energy for C60 determined using Kissinger method is 91 kJ·mol^-1。
基金Funded by the National Natural Science Foundation of China(No.51078372)the Doctoral Program of Higher Specialized Research Foundation(No.20105522110002)
文摘Fume suppression mechanisms and the effect of expanded graphite on the performance of asphalt were studied by applying infrared spectroscopy(FT-IR), X-ray diffraction(XRD), scanning electron microscopy(SEM) and comprehensive thermal analysis(TG, DSC). The experimental results confirm that asphalt which is mixed with expandable graphite will expand in the process of hot mix, and the expanded graphite layer will swell by the light component in the asphalt. The light component in the asphalt and PAHs adsorption on expanded graphite surface or part of the plug in the expanded graphite layer between plates made nucleation crystallization growth. And the Van der Waals force and the bonding of the lattice can effectively restrain the asphalt fume release. Meanwhile, the expanding agent with oxidative can spread into the asphalt, leading to asphalt oxygenated and plastic abate, while the ductility decreases. Expanded graphite, SBS modifier and environment- friendly plasticizers are used to composite modified asphalt. According to asphalt fume release experiment, normal test of asphalt performance, Brookfield viscosity test, RTFOT test and asphalt mixture tests(high temperature stability, low temperature stability, water stability), it has been proven that the modified asphalt’s performance is better than that of matrix asphalt and equivalent to that of SBS modified asphalt. Furthermore, it has good fume suppression effect.
文摘Alachlor is used widely as a herbicide,but is an environmental endocrine disruptor. O 3/H 2O 2 system is used as catalyst to delve on the degradation efficiency of alachlor. The amount of the catalyst H 2O 2,the pH value of the soluble, the temperature and quality of water sample are changed to investigate the effect of these factors on the degradation of alachlor. The degradation of alachlor is qualitatively analyzed through their GS MS spectra and the possible mechanism of the degradation of alachlor is discussed as well.
基金funded by National Natural Science Foundation of China(Grant No.U21A20274)We also gratefully acknowledge the support of the National Key R&D Program Key Special Project(Grant No.2021YFD1600103)+1 种基金Technology Innovation Project of Hubei Province(Grant No.2021BEC021)Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(CAASASTIP-2013-OCRI).
文摘Food provides abundant nutrients for human beings, but also has sensory functions and physiological regulation.Lipids are the main components of food as well as the important structural and functional components of cells.Nevertheless, lipids are easily oxidized by different ways, such as thermal oxidation and air oxidation. Lipidoxidation has adverse effects on food quality and human health. Therefore, efforts should be made to reduce lipidoxidation and improve its stability. This review focuses on important knowledge about lipid oxidation, includingthe concept of lipids and lipid oxidation, the main pathways and mechanisms of lipid oxidation, factors affectinglipid oxidation, strategies to improve the stability of lipid oxidation, and the recent research progress of lipidoxidation in food science and nutritional health.
基金the support from the Brook Byers Institute for Sustainable Systems,Hightower ChairGeorgia Research Alliance at the Georgia Institute of Technology。
文摘TiO_(2)has demonstrated outstanding performance in electrochemical advanced oxidation processes(EAOPs)due to its structural stability and high oxygen overpotential.However,there is still much room for improving its electrochemical activity.Herein,narrow bandgap manganese oxide(MnO_(x))was composited with TiO_(2)nanotube arrays(TiO_(2)NTAs)that in-situ oxidized on porous Ti sponge,forming the MnO_(x)-TiO_(2)NTAs anode.XANES and XPS analysis further proved that the composition of MnO_(x)is Mn2O3.Electrochemical characterizations revealed that increasing the composited concentration of MnO_(x)can improve the conductivity and reduce oxygen evolution potential so as to improve the electrochemical activity of the composited MnO_(x)-TiO_(2)NTAs anode.Meanwhile,the optimal degradation rate of benzoic acid(BA)was achieved using MnO_(x)-TiO_(2)NTAs with a MnO_(x)concentration of 0.1 mmol L^(-1),and the role of MnO_(x)was proposed based on DFT calculation.Additionally,the required electrical energy(EE/O)to destroy BA was optimized by varying the composited concentration of MnO_(x)and the degradation voltage.These quantitative results are of great significance for the design and application of high-performance materials for EAOPs.
文摘For a climate-neutral future mobility,the socalled e-fuels can play an essential part.Especially,oxygenated e-fuels containing oxygen in their chemical formula have the additional potential to burn with significantly lower soot levels.In particular,polyoxymethylene dimethyl ethers or oxymethylene ethers(PODEs or OMEs)do not contain carbon-carbon bonds,prohibiting the production of soot precursors like acetylene(C_(2)H_(2)).These properties make OMEs a highly interesting candidate for future climate-neutral compression-ignition engines.However,to fully leverage their potential,the auto-ignition process,flame propagation,and mixing regimes of the combustion need to be understood.To achieve this,efficient oxidation mechanisms suitable for computational fluid dynamics(CFD)calculations must be developed and validated.The present work aims to highlight the improvements made by developing an adapted oxidation mechanism for OME1-6 and introducing it into a validated spray combustion CFD model for OMEs.The simulations were conducted for single-and multi-injection patterns,changing ambient temperatures,and oxygen contents.The results were validated against high-pressure and high-temperature constantpressure chamber experiments.OH*-chemiluminescence measurements accomplished the characterization of the auto-ignition process.Both experiments and simulations were conducted for two different injectors.Significant improvements concerning the prediction of the ignition delay time were accomplished while also retaining an excellent agreement for the flame lift-off length.The spatial zones of high-temperature reaction activity were also affected by the adaption of the reaction kinetics.They showed a greater tendency to form OH^(*) radicals within the center of the spray in accordance with the experiments.
基金the National Natural Science Foundation of China(Nos.52372059,52172068,52232004,and 52002092)the Heilongjiang Natural Science Fund for Young Scholars(No.YQ2021E017)+3 种基金the Fundamental Research Funds for the Central Universities(No.2022FRFK060012)the Heilongjiang Touyan Team Program,and the Advanced Talents Scientific Research Foundation of Shenzhen:Yu Zhou.the Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology and Advanced Space Propulsion Laboratory of BICE(No.LabASP-2023-11)the Huiyan Action(No.1A423653)the Key Technologies R&D Program of CNBM(No.2023SJYL05).Ralf Riedel also gratefully acknowledges the financial support provided by the Research Training Group 2561“MatCom-ComMat:Materials Compounds from Composite Materials for Applications in Extreme Conditions”funded by the Deutsche Forschungsgemeinschaft(DFG),Bonn,Germany.
文摘To improve the oxidation resistance of short carbon fiber(C_(sf))-reinforced mechanically alloyed SiBCN(MA-SiBCN)(C_(sf)/MA-SiBCN)composites,dense amorphous C_(sf)/SiBCN composites containing both MA-SiBCN and polymer-derived ceramics SiBCN(PDCs-SiBCN)were prepared by repeated polymer infiltration and pyrolysis(PIP)of layered C_(sf)/MA-SiBCN composites at 1100℃,and the oxidation behavior and damage mechanism of the as-prepared C_(sf)/SiBCN at 1300–1600℃ were compared and discussed with those of C_(sf)/MA-SiBCN.The C_(sf)/MA-SiBCN composites resist oxidation attack up to 1400℃ but fail at 1500℃ due to the collapse of the porous framework,while the PIP-densified C_(sf)/SiBCN composites are resistant to static air up to 1600℃.During oxidation,oxygen diffuses through preexisting pores and the pores left by oxidation of carbon fibers and pyrolytic carbon(PyC)to the interior of the matrix.Owing to the oxidative coupling effect of the MA-SiBCN and PDCs-SiBCN matrices,a relatively continuous and dense oxide layer is formed on the sample surface,and the interfacial region between the oxide layer and the matrix of the as-prepared composite contains an amorphous glassy structure mainly consisting of Si and O and an incompletely oxidized but partially crystallized matrix,which is primarily responsible for improving the oxidation resistance.
基金Project(GC13A113)supported by the Technology Research and Development Program of Heilongjiang Provincial Science and Technology DepartmentProject(12511469)supported by Heilongjiang Provincial Science and Technology Department
文摘Ni-La2O3/CeO2 composite films were prepared by electrodeposition from a nickel sulfate bath containing certain content of micrometer and nanometer La2O3/CeO2 particles. The effect of La2O3 or CeO2 particle size on the oxidation resistance of the electrodeposited Ni-La2O3/CeO2 composites in air at 1000 °C was studied. The results indicate that, compared with the electrodeposited Ni-film, Ni-La2O3/CeO2 composites exhibit a superior oxidation resistance due to the codeposited La2O3 or CeO2 particles blocking the outward diffusion of nickel. Moreover, compared with nanoparticles, La2O3 or CeO2 microparticles have stronger effect because La2O3 or CeO2 microparticles also act as a diffusion barrier layer at the onset of oxidation.
基金supported by the National Key R&D Program of China(2017YFC0211503,2016YFC0207100)the Strategic Priority Research Program(A)of the Chinese Academy of Sciences(XDA23030300)+2 种基金the National Natural Science Foundation of China(21401200,51672273)the Open Research Fund of State Key Laboratory of Multi-phase Complex Systems(MPCS-2017-D-06)the Young Talent Project of the Center for Excellence in Regional Atmospheric Environment,CAS(CERAE201805)~~
文摘Catalytic oxidation is regarded as one of the most promising strategies for volatile organic compounds(VOCs)purification.Mixed metal oxides(MMOs),after topological transformation using layered double hydroxides(LDHs)as precursors,are extensively used as catalysts for VOCs oxidation due to their uniformity advantage.This review summarizes the developments in the LDH-derived VOCs heterogeneous catalytic oxidation over the last 10 years.Particularly,it addresses the VOCs abatement performance over MMO,noble metal/MMO,core-shell structured MMO,and integral MMO film catalysts originating from LDHs.Moreover,it highlights the water vapor effect and oxidation mechanism.This review indicates that LDH-based catalysts are a category of important VOCs oxidation materials.