期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Aldehyde-Sodium Alginate and Amino-Gelatin Preparation as Soft Tissue Adhesive
1
作者 袁柳 耿晓华 +2 位作者 李家俊 孙彬彬 莫秀梅 《Journal of Donghua University(English Edition)》 EI CAS 2014年第4期503-506,共4页
Sodium alginate and gelatin are both remarkable natural biomaterials; they all have been extensively applied in tissue engineering and other relative fields,due to their low price and good biocompatibility. In this pa... Sodium alginate and gelatin are both remarkable natural biomaterials; they all have been extensively applied in tissue engineering and other relative fields,due to their low price and good biocompatibility. In this paper,we oxidized sodium alginate with sodium periodate to convert 1,2-hydroxyl groups into aldehyde groups to get aldehyde-sodium alginate( A-SA). Gelatin was modified with ethylenediamine( ED) in the presence of water-soluble1-ethyl-3( 3-dimethylaminopropyl) carbodiimide( EDC) to introduce additional amino groups to get amino-gelatin. Upon mixing the A-SA and amino-gelatin aqueous solutions together,a gel rapidly formed based on the Schiff's base reaction between the aldehyde groups in A-SA and the amino groups in amino-gelatin.Fourier transform infrared spectroscopy( FTIR) analysis confirmed the characteristic peak of Schiff's base group in the hydrogel. The gelation time measure has confirmed the gelation time is dependent on the aldehyde group content in A-SA and amino group content in amino-gelatin. The fasted hydrogel formation takes place within 30 s. The entire test suggested that this gel could be a promising candidate as soft tissue adhesive. 展开更多
关键词 oxidized sodium alginate amino-gelatin adhesive agent
下载PDF
A soft tissue adhesive based on aldehyde-sodium alginate and amino-carboxymethyl chitosan preparation through the Schiff reaction 被引量:4
2
作者 Yu WU Liu YUAN +5 位作者 Nai-an SHENG Zi-qi GU Wen-hao FENG Hai-yue YIN Yosry MORSI Xiu-mei MO 《Frontiers of Materials Science》 SCIE CSCD 2017年第3期215-222,共8页
Sodium alginate and carboxymethyl chitosan have been extensively applied in tissue engineering and other relative fields due to their low price and excellent biocompatibility. In this paper, we oxidized sodium alginat... Sodium alginate and carboxymethyl chitosan have been extensively applied in tissue engineering and other relative fields due to their low price and excellent biocompatibility. In this paper, we oxidized sodium alginate with sodium periodate to convert 1,2-hydroxyl groups into aldehyde groups to get aldehyde-sodium alginate (A- SA). Carboxymethyl chitosan was modified with ethylenediamine (ED) in the presence of water-soluble N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) to introduce additional amino groups to get amino-carboxymethyl chitosan (A-CS). Upon mixing the A-SA and A-CS aqueous solutions together, a gel rapidly formed based on the Schiff's base reaction between aldehyde groups in A-SA and amino groups in A-CS. FTIR analysis confirmed the characteristic peak of Schiff's base group in the hydrogel. It was confirmed that the gelation time be dependent on the aldehyde group content in A-SA and amino group content in A-CS. The fasted hydrogel formation takes place within 10 min. The data of bonding strength and cytotoxicity measurement also showed that the hydrogel had good adhesion and biocompatibility. All these results support that this gel has the potential as soft tissue adhesive. 展开更多
关键词 oxidized sodium alginate amino-carboxymethyl chitosan tissue adhesive Schiff's base
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部