Sodium alginate and gelatin are both remarkable natural biomaterials; they all have been extensively applied in tissue engineering and other relative fields,due to their low price and good biocompatibility. In this pa...Sodium alginate and gelatin are both remarkable natural biomaterials; they all have been extensively applied in tissue engineering and other relative fields,due to their low price and good biocompatibility. In this paper,we oxidized sodium alginate with sodium periodate to convert 1,2-hydroxyl groups into aldehyde groups to get aldehyde-sodium alginate( A-SA). Gelatin was modified with ethylenediamine( ED) in the presence of water-soluble1-ethyl-3( 3-dimethylaminopropyl) carbodiimide( EDC) to introduce additional amino groups to get amino-gelatin. Upon mixing the A-SA and amino-gelatin aqueous solutions together,a gel rapidly formed based on the Schiff's base reaction between the aldehyde groups in A-SA and the amino groups in amino-gelatin.Fourier transform infrared spectroscopy( FTIR) analysis confirmed the characteristic peak of Schiff's base group in the hydrogel. The gelation time measure has confirmed the gelation time is dependent on the aldehyde group content in A-SA and amino group content in amino-gelatin. The fasted hydrogel formation takes place within 30 s. The entire test suggested that this gel could be a promising candidate as soft tissue adhesive.展开更多
Sodium alginate and carboxymethyl chitosan have been extensively applied in tissue engineering and other relative fields due to their low price and excellent biocompatibility. In this paper, we oxidized sodium alginat...Sodium alginate and carboxymethyl chitosan have been extensively applied in tissue engineering and other relative fields due to their low price and excellent biocompatibility. In this paper, we oxidized sodium alginate with sodium periodate to convert 1,2-hydroxyl groups into aldehyde groups to get aldehyde-sodium alginate (A- SA). Carboxymethyl chitosan was modified with ethylenediamine (ED) in the presence of water-soluble N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) to introduce additional amino groups to get amino-carboxymethyl chitosan (A-CS). Upon mixing the A-SA and A-CS aqueous solutions together, a gel rapidly formed based on the Schiff's base reaction between aldehyde groups in A-SA and amino groups in A-CS. FTIR analysis confirmed the characteristic peak of Schiff's base group in the hydrogel. It was confirmed that the gelation time be dependent on the aldehyde group content in A-SA and amino group content in A-CS. The fasted hydrogel formation takes place within 10 min. The data of bonding strength and cytotoxicity measurement also showed that the hydrogel had good adhesion and biocompatibility. All these results support that this gel has the potential as soft tissue adhesive.展开更多
基金National Natural Science Foundations of China(Nos.30973105,31271035)Shanghai Committee of Science and Technology of Nano Special,China(No.11nm0506200)Ph.D.Programs Foundation of Ministry of Education of China(No.20130075110005)
文摘Sodium alginate and gelatin are both remarkable natural biomaterials; they all have been extensively applied in tissue engineering and other relative fields,due to their low price and good biocompatibility. In this paper,we oxidized sodium alginate with sodium periodate to convert 1,2-hydroxyl groups into aldehyde groups to get aldehyde-sodium alginate( A-SA). Gelatin was modified with ethylenediamine( ED) in the presence of water-soluble1-ethyl-3( 3-dimethylaminopropyl) carbodiimide( EDC) to introduce additional amino groups to get amino-gelatin. Upon mixing the A-SA and amino-gelatin aqueous solutions together,a gel rapidly formed based on the Schiff's base reaction between the aldehyde groups in A-SA and the amino groups in amino-gelatin.Fourier transform infrared spectroscopy( FTIR) analysis confirmed the characteristic peak of Schiff's base group in the hydrogel. The gelation time measure has confirmed the gelation time is dependent on the aldehyde group content in A-SA and amino group content in amino-gelatin. The fasted hydrogel formation takes place within 30 s. The entire test suggested that this gel could be a promising candidate as soft tissue adhesive.
基金Acknowledgements The authors sincerely appreciate the supports of the National Major Research Program of China (2016YFC1100202), the National Natural Science Foundation of China (Grant No. 31470941), the Yantai Double Hundred Talent Plan, and the "111 Project" Biomedical Textile Materials Science and Technology, China (Grant No. B07024).
文摘Sodium alginate and carboxymethyl chitosan have been extensively applied in tissue engineering and other relative fields due to their low price and excellent biocompatibility. In this paper, we oxidized sodium alginate with sodium periodate to convert 1,2-hydroxyl groups into aldehyde groups to get aldehyde-sodium alginate (A- SA). Carboxymethyl chitosan was modified with ethylenediamine (ED) in the presence of water-soluble N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) to introduce additional amino groups to get amino-carboxymethyl chitosan (A-CS). Upon mixing the A-SA and A-CS aqueous solutions together, a gel rapidly formed based on the Schiff's base reaction between aldehyde groups in A-SA and amino groups in A-CS. FTIR analysis confirmed the characteristic peak of Schiff's base group in the hydrogel. It was confirmed that the gelation time be dependent on the aldehyde group content in A-SA and amino group content in A-CS. The fasted hydrogel formation takes place within 10 min. The data of bonding strength and cytotoxicity measurement also showed that the hydrogel had good adhesion and biocompatibility. All these results support that this gel has the potential as soft tissue adhesive.