Fossil fuel combustion is one of the major means to meet the mounting global energy demand. However, the increasing NO_x and N_2 O emissions arising from fossil fuel combustion process have hazardous effects. Thus, mi...Fossil fuel combustion is one of the major means to meet the mounting global energy demand. However, the increasing NO_x and N_2 O emissions arising from fossil fuel combustion process have hazardous effects. Thus, mitigating these gases is vital to attain a sustainable environment. Interestingly, oxy-fuel combustion in fluidized bed for carbon capture and minimized NO_x emissions is strongly sustainable compare to the other approaches. It was assessed that NO_x formation and fuel-N conversion have significant limitation under oxy-fluidized bed compared to air mode and the mechanism of NO_x formation is still deficient and requires further development. In addition, this review paper discussed the potential of primary measure as low emission process with others supplementary techniques for feasible NO_x reduction. The influences of combustion mode, operating parameters, and reduction techniques such as flue gas recirculation, oxygen staging, biomass co-firing, catalyst, influence of fluidized bed design and structure, decoupling combustion and their merges are respectively evaluated. Findings show that significant minimization of NO_x emission can be achieved through combination of primary and secondary reduction techniques.展开更多
The co-firing of coal and biomass in oxy-fuel fluidized beds is one of the most promising technologies for capturing CO2.This technology has attracted wide attention from academia and industry in recent years as a neg...The co-firing of coal and biomass in oxy-fuel fluidized beds is one of the most promising technologies for capturing CO2.This technology has attracted wide attention from academia and industry in recent years as a negative emission method to capture CO2 produced by carbon contained in biomass.In the past decades,many studies have been carried out regarding experiments and numerical simulations under oxy-fuel combustion conditions.This paper firstly briefly discusses the techno-economic viability of the biomass and coal co-firing with oxycombustion and then presents a review of recent advancements involving experimental research and computational fluid dynamics(CFD)simulations in this field.Experimental studies on mechanism research,such as thermogravimetric analysis and tube furnace experiments,and fluidized bed experiments based on oxy-fuel fluidized beds with different sizes as well as the main findings,are summarized as a part of this review.It has been recognized that CFD is a useful approach for understanding the behaviors of the co-firing of coal and biomass in oxyfuel fluidized beds.We summarize a recent survey of published CFD research on oxy-fuel fluidized bed combustion,which categorized into Eulerian and Lagrangian methods.Finally,we discuss the challenges and interests for future research.展开更多
基金Supported by the University of Malaya,Ministry of Education Malaysia under the grant FP064-2015A(FRGS)IPPP grant number:PG101-2015B
文摘Fossil fuel combustion is one of the major means to meet the mounting global energy demand. However, the increasing NO_x and N_2 O emissions arising from fossil fuel combustion process have hazardous effects. Thus, mitigating these gases is vital to attain a sustainable environment. Interestingly, oxy-fuel combustion in fluidized bed for carbon capture and minimized NO_x emissions is strongly sustainable compare to the other approaches. It was assessed that NO_x formation and fuel-N conversion have significant limitation under oxy-fluidized bed compared to air mode and the mechanism of NO_x formation is still deficient and requires further development. In addition, this review paper discussed the potential of primary measure as low emission process with others supplementary techniques for feasible NO_x reduction. The influences of combustion mode, operating parameters, and reduction techniques such as flue gas recirculation, oxygen staging, biomass co-firing, catalyst, influence of fluidized bed design and structure, decoupling combustion and their merges are respectively evaluated. Findings show that significant minimization of NO_x emission can be achieved through combination of primary and secondary reduction techniques.
基金supported by the Key Program of the National Natural Science Foundation of China(51736002)the Natural Science Foundation of Jiangsu Province(BK20180386).
文摘The co-firing of coal and biomass in oxy-fuel fluidized beds is one of the most promising technologies for capturing CO2.This technology has attracted wide attention from academia and industry in recent years as a negative emission method to capture CO2 produced by carbon contained in biomass.In the past decades,many studies have been carried out regarding experiments and numerical simulations under oxy-fuel combustion conditions.This paper firstly briefly discusses the techno-economic viability of the biomass and coal co-firing with oxycombustion and then presents a review of recent advancements involving experimental research and computational fluid dynamics(CFD)simulations in this field.Experimental studies on mechanism research,such as thermogravimetric analysis and tube furnace experiments,and fluidized bed experiments based on oxy-fuel fluidized beds with different sizes as well as the main findings,are summarized as a part of this review.It has been recognized that CFD is a useful approach for understanding the behaviors of the co-firing of coal and biomass in oxyfuel fluidized beds.We summarize a recent survey of published CFD research on oxy-fuel fluidized bed combustion,which categorized into Eulerian and Lagrangian methods.Finally,we discuss the challenges and interests for future research.