Through the mass balance and thermal balance calculation for a typical OxyCup (or OxiCup) furnace process featuring a capacity of 380 kt/a of steel plant residuMs, the material flow and thermal flow diagrams were fi...Through the mass balance and thermal balance calculation for a typical OxyCup (or OxiCup) furnace process featuring a capacity of 380 kt/a of steel plant residuMs, the material flow and thermal flow diagrams were firstly obtained. Then, the performance of the main fuel in the OxyCup process, i.e. coke and carbon dust, was ana lyzed, and the results indicated that coke was mainly used as the stock column skeleton for the furnace and exothermal agent with a weak reduction ability; whereas carbon dust was mixed in the C-brick to reduce the iron oxide. In addition, the comparison between OxyCup process and traditional blast furnace process indicated that the reduction and melting processes in the OxyCup process were relatively isolated, while in the traditional blast furnace process, they were mixed with each other in the high temperature zone. Moreover, oxidizing atmosphere is necessary in part of the OxyCup furnaces to ensure the complete combustion of part of the coke, while only reducing atmosphere is al lowed in traditional blast furnaces. Finally, it was confirmed that oxygen enrichment can make a remarkable increase of the energy income and high temperature blast makes oMy a small contribution to energy income as the energy from the combustion of carbon takes up nearly 90% of the total income.展开更多
基金Sponsored by National Natural Science Foundation of China(51174023)5th Special Funding of Postdoctoral Science Foundation of China(2012T50045)
文摘Through the mass balance and thermal balance calculation for a typical OxyCup (or OxiCup) furnace process featuring a capacity of 380 kt/a of steel plant residuMs, the material flow and thermal flow diagrams were firstly obtained. Then, the performance of the main fuel in the OxyCup process, i.e. coke and carbon dust, was ana lyzed, and the results indicated that coke was mainly used as the stock column skeleton for the furnace and exothermal agent with a weak reduction ability; whereas carbon dust was mixed in the C-brick to reduce the iron oxide. In addition, the comparison between OxyCup process and traditional blast furnace process indicated that the reduction and melting processes in the OxyCup process were relatively isolated, while in the traditional blast furnace process, they were mixed with each other in the high temperature zone. Moreover, oxidizing atmosphere is necessary in part of the OxyCup furnaces to ensure the complete combustion of part of the coke, while only reducing atmosphere is al lowed in traditional blast furnaces. Finally, it was confirmed that oxygen enrichment can make a remarkable increase of the energy income and high temperature blast makes oMy a small contribution to energy income as the energy from the combustion of carbon takes up nearly 90% of the total income.