This study evaluated the Cretaceous(Campanian–Maastrichtian) kaolinitic sediments of the Ajali/Mamu and Enugu/Nkporo Formations from the Lower Benue Trough of Nigeria. A combined method of inductively coupled plasma...This study evaluated the Cretaceous(Campanian–Maastrichtian) kaolinitic sediments of the Ajali/Mamu and Enugu/Nkporo Formations from the Lower Benue Trough of Nigeria. A combined method of inductively coupled plasma–mass spectrometry and isotope ratio mass spectrometry was used to investigate trace and rareearth element geochemistry and hydrogen and oxygen isotopic compositions. These data were then used to infer the sediments' provenance and paleoclimatic conditions during their deposition. The sediments contained low concentrations of most trace elements, with the exceptions of Zr(651–1352 ppm), Ba(56–157 ppm), V(38–90 ppm),and Sr(15.1–59.6 ppm). Average values of Co and Ni were1.5 and 0.7 ppm, respectively. Trace and rare earth element values were lower than corresponding values for upper continental crust and Post-Archean Australian Shale, with the exception of Zr. The samples showed only slight light rare-earth enrichment and nearly flat heavy rare-earth depletion patterns, with negative Eu and Tm anomalies,typical of felsic sources. Geochemical parameters such as La/Sc, Th/Sc, and Th/Co ratios support that the kaolinitic sediments were derived from a felsic rock source, likely deposited in an oxic environment.^(18 )O values ranged from+ 15.4 to + 21.2% for the investigated samples, consistent with a residual material derived from chemicalweathering of felsic rock and redeposited in a sedimentary basin(typical values of + 19 to + 21.2%). While in the basin, the sediments experienced extended interactions with meteoric water enriched in d D and d16 O. However,the variation in d D and d16 O values for the investigated samples is attributed to the high temperature of formation(54–91 °C). The d D and d^(18 )O values suggest that the sediments, although obtained from different localities within the Lower Benue Trough, formed under similar hot,tropical climatic conditions.展开更多
A gold leaching process by using in situ oxidation products of added elemental sulfur in Ca(OH)2 solution was investigated. A gold concentrate containing 45 g/t Au was tested and 85%~87% of gold were leached. The leac...A gold leaching process by using in situ oxidation products of added elemental sulfur in Ca(OH)2 solution was investigated. A gold concentrate containing 45 g/t Au was tested and 85%~87% of gold were leached. The leached gold depends mainly on the initial molar ratio of elemental sulfur to the hydroxyl ion, the consumption of oxygen and the reaction temperature. Adding some surfactants, such as lignosulfonic calcium, at lower concentration increased the leached Au but at higher concentration decreased it. Both of thermodynamic analysis and experimental results show that thiosulfate is the major complexing agent for gold in the process.展开更多
A gold leaching process by using oxidation products of elemental sulfur in alkaline solutions was proposed and investigated. A gold concentrate and a residue from an arsenic refractory gold concentrate by acidic oxida...A gold leaching process by using oxidation products of elemental sulfur in alkaline solutions was proposed and investigated. A gold concentrate and a residue from an arsenic refractory gold concentrate by acidic oxidation leaching were tested. The residue contains 16.3% elemental sulfur and no more elemental sulfur was added in tests. For the concentrate elemental sulfur was added before leaching tests. The leaching ratio of gold depends mainly on the initial equivalent ratio of elemental sulfur to hydroxyl ions, the consumption of oxygen and the reaction temperature in the process. Analysis of the experimental results shows that thiosulfate is the majority complexing reagent for gold in the process. Over 90% gold was leached from the residue and 82%87% from the concentrate by using this process.展开更多
A series of Reed Pulps were prepared in which the level of Non-Process Elements(NPEs), including calcium, manganese,copper,iron were seclectively enriched and depleted, these pulps were then oxygen delignification,and...A series of Reed Pulps were prepared in which the level of Non-Process Elements(NPEs), including calcium, manganese,copper,iron were seclectively enriched and depleted, these pulps were then oxygen delignification,and the pulps were characterized according to kappa number,viscosity,brightness. The results indicated that the enrichment of NPEs have an important effulence on delignification,pulp viscosity and brightness, iron is the most harmful during oxygen delignification but manganese is just like a kind of aid and can enhance brightness and delignification.展开更多
Composite nickel hydroxide films were prepared by cathodic co electrodeposition from metal nitrate solution and characterized by cyclic voltammetry in 1.0 mol/L KOH solution. The codeposited light rare earth elements...Composite nickel hydroxide films were prepared by cathodic co electrodeposition from metal nitrate solution and characterized by cyclic voltammetry in 1.0 mol/L KOH solution. The codeposited light rare earth elements were lanthanum, cerium, praseodymium and neodymium. The films were analyzed by spectrophotometry and optical transmission. The results of the cyclic voltammetry in 1.0 mol/L KOH solution showed that the current density for oxygen evolution at the film electrode was affected by the co deposited rare earth metal ions in the film. About 20 mA/cm 2 increase of current density for oxygen evolution was found when the film was obtained from the solution with cerium (7% v/v) and nickel (93% v/v) nitrate. The effects of galvanostatic cathodic current density for the film formation on the oxygen evolution at the film electrodes from the alkaline were discussed.展开更多
A middle-aged male patient with a right orbital comminuted fracture underwent computer tomography scanning, and a three-dimensional finite element model of the eyes and relevant tissues was established. Optic nerve st...A middle-aged male patient with a right orbital comminuted fracture underwent computer tomography scanning, and a three-dimensional finite element model of the eyes and relevant tissues was established. Optic nerve stress in a hyperbaric oxygen environment was simulated and analyzed by changing the elastic modulus and external pressure of the skull at the damage side. Results showed that stress maximized at the contact site of the optic nerve and the eyeball in the damaged and intact eye orbits. Optic nerve stress at the damaged orbit significantly increased; however, stress in the intact orbit only slightly changed with decreased elastic modulus of the skull while external pressure remained unchanged. Maximum optic nerve stress increased in the damaged and intact side, along with increased external pressure, while elastic modulus remained unchanged. These experimental findings suggested that the optic nerve was compressed under hyperbaric oxygen and optic nerve stress was greater in the damaged orbit than in the intact orbit.展开更多
文摘This study evaluated the Cretaceous(Campanian–Maastrichtian) kaolinitic sediments of the Ajali/Mamu and Enugu/Nkporo Formations from the Lower Benue Trough of Nigeria. A combined method of inductively coupled plasma–mass spectrometry and isotope ratio mass spectrometry was used to investigate trace and rareearth element geochemistry and hydrogen and oxygen isotopic compositions. These data were then used to infer the sediments' provenance and paleoclimatic conditions during their deposition. The sediments contained low concentrations of most trace elements, with the exceptions of Zr(651–1352 ppm), Ba(56–157 ppm), V(38–90 ppm),and Sr(15.1–59.6 ppm). Average values of Co and Ni were1.5 and 0.7 ppm, respectively. Trace and rare earth element values were lower than corresponding values for upper continental crust and Post-Archean Australian Shale, with the exception of Zr. The samples showed only slight light rare-earth enrichment and nearly flat heavy rare-earth depletion patterns, with negative Eu and Tm anomalies,typical of felsic sources. Geochemical parameters such as La/Sc, Th/Sc, and Th/Co ratios support that the kaolinitic sediments were derived from a felsic rock source, likely deposited in an oxic environment.^(18 )O values ranged from+ 15.4 to + 21.2% for the investigated samples, consistent with a residual material derived from chemicalweathering of felsic rock and redeposited in a sedimentary basin(typical values of + 19 to + 21.2%). While in the basin, the sediments experienced extended interactions with meteoric water enriched in d D and d16 O. However,the variation in d D and d16 O values for the investigated samples is attributed to the high temperature of formation(54–91 °C). The d D and d^(18 )O values suggest that the sediments, although obtained from different localities within the Lower Benue Trough, formed under similar hot,tropical climatic conditions.
基金Supported by the National Natural Science Foundation of China (No.: 59674025)
文摘A gold leaching process by using in situ oxidation products of added elemental sulfur in Ca(OH)2 solution was investigated. A gold concentrate containing 45 g/t Au was tested and 85%~87% of gold were leached. The leached gold depends mainly on the initial molar ratio of elemental sulfur to the hydroxyl ion, the consumption of oxygen and the reaction temperature. Adding some surfactants, such as lignosulfonic calcium, at lower concentration increased the leached Au but at higher concentration decreased it. Both of thermodynamic analysis and experimental results show that thiosulfate is the major complexing agent for gold in the process.
文摘A gold leaching process by using oxidation products of elemental sulfur in alkaline solutions was proposed and investigated. A gold concentrate and a residue from an arsenic refractory gold concentrate by acidic oxidation leaching were tested. The residue contains 16.3% elemental sulfur and no more elemental sulfur was added in tests. For the concentrate elemental sulfur was added before leaching tests. The leaching ratio of gold depends mainly on the initial equivalent ratio of elemental sulfur to hydroxyl ions, the consumption of oxygen and the reaction temperature in the process. Analysis of the experimental results shows that thiosulfate is the majority complexing reagent for gold in the process. Over 90% gold was leached from the residue and 82%87% from the concentrate by using this process.
文摘A series of Reed Pulps were prepared in which the level of Non-Process Elements(NPEs), including calcium, manganese,copper,iron were seclectively enriched and depleted, these pulps were then oxygen delignification,and the pulps were characterized according to kappa number,viscosity,brightness. The results indicated that the enrichment of NPEs have an important effulence on delignification,pulp viscosity and brightness, iron is the most harmful during oxygen delignification but manganese is just like a kind of aid and can enhance brightness and delignification.
文摘Composite nickel hydroxide films were prepared by cathodic co electrodeposition from metal nitrate solution and characterized by cyclic voltammetry in 1.0 mol/L KOH solution. The codeposited light rare earth elements were lanthanum, cerium, praseodymium and neodymium. The films were analyzed by spectrophotometry and optical transmission. The results of the cyclic voltammetry in 1.0 mol/L KOH solution showed that the current density for oxygen evolution at the film electrode was affected by the co deposited rare earth metal ions in the film. About 20 mA/cm 2 increase of current density for oxygen evolution was found when the film was obtained from the solution with cerium (7% v/v) and nickel (93% v/v) nitrate. The effects of galvanostatic cathodic current density for the film formation on the oxygen evolution at the film electrodes from the alkaline were discussed.
基金the National Natural Science Foundation of China (Key Program),No.11032008the National Natural Science Foundation of China (General Program),No. 10872140+1 种基金10702048the Natural Science Foundation of Shanxi Province,No.2010021004-1
文摘A middle-aged male patient with a right orbital comminuted fracture underwent computer tomography scanning, and a three-dimensional finite element model of the eyes and relevant tissues was established. Optic nerve stress in a hyperbaric oxygen environment was simulated and analyzed by changing the elastic modulus and external pressure of the skull at the damage side. Results showed that stress maximized at the contact site of the optic nerve and the eyeball in the damaged and intact eye orbits. Optic nerve stress at the damaged orbit significantly increased; however, stress in the intact orbit only slightly changed with decreased elastic modulus of the skull while external pressure remained unchanged. Maximum optic nerve stress increased in the damaged and intact side, along with increased external pressure, while elastic modulus remained unchanged. These experimental findings suggested that the optic nerve was compressed under hyperbaric oxygen and optic nerve stress was greater in the damaged orbit than in the intact orbit.