期刊文献+
共找到550篇文章
< 1 2 28 >
每页显示 20 50 100
Tuning electronic structure of RuO_(2)by single atom Zn and oxygen vacancies to boost oxygen evolution reaction in acidic medium 被引量:1
1
作者 Qing Qin Tiantian Wang +7 位作者 Zijian Li Guolin Zhang Haeseong Jang Liqiang Hou Yu Wang Min Gyu Kim Shangguo Liu Xien Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期94-102,I0003,共10页
The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct ... The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct activity-stability trade-off model is full of significance but challenging.Herein,a single atom Zn stabilized RuO_(2)with enriched oxygen vacancies(SA Zn-RuO_(2))is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction(OER).Compared with commercial RuO_(2),the enhanced Ru–O bond strength of SA Zn-RuO_(2)by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru,while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation.Simultaneously,the optimized surrounding electronic structure of Ru sites in SA ZnRuO_(2)decreases the adsorption energies of OER intermediates to reduce the reaction barrier.As a result,the representative SA Zn-RuO_(2)exhibits a low overpotential of 210 mV to achieve 10 mA cm^(-2)and a greatly enhanced durability than commercial RuO_(2).This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER. 展开更多
关键词 ELECTROCATALYST Acidic oxygen evolution reaction Electronic structure engineering DURABILITY reaction barrier
下载PDF
The role of strain in oxygen evolution reaction
2
作者 Zihang Feng Chuanlin Dai +5 位作者 Zhe Zhang Xuefei Lei Wenning Mu Rui Guo Xuanwen Liu Junhua You 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期322-344,I0009,共24页
The oxygen evolution reaction(OER)is a crucial step in metal-air batteries and water splitting technologies,playing a significant role in the efficiency and achievable heights of these two technologies.However,the OER... The oxygen evolution reaction(OER)is a crucial step in metal-air batteries and water splitting technologies,playing a significant role in the efficiency and achievable heights of these two technologies.However,the OER is a four-step,four-electron reaction,and its slow kinetics result in high overpotentials,posing a challenge.To address this issue,numerous strategies involving modified catalysts have been proposed and proven to be highly efficient.In these strategies,the introduction of strain has been widely reported because it is generally believed to effectively regulate the electronic structure of metal sites and alter the adsorption energy of catalyst surfaces with reaction intermediates.However,strain has many other effects that are not well known,making it an important yet unexplored area.Based on this,this review provides a detailed introduction to the various roles of strain in OER.To better explain these roles,the review also presents the definition of strain and elucidates the potential mechanisms of strain in OER based on the d-band center theory and adsorption volcano plot.Additionally,the review showcases various ways of introducing strain in OER through examples reported in the latest literature,aiming to provide a comprehensive perspective for the development of strain engineering.Finally,the review analyzes the appropriate proportion of strain introduction,compares compressive and tensile strain,and examines the impact of strain on stability.And the review offers prospects for future research directions in this emerging field. 展开更多
关键词 oxygen evolution reaction Strain generation Tensile strain Compressive strain Strain mechanism Strain effects
下载PDF
Exciting lattice oxygen of nickel–iron bi-metal alkoxide for efficient electrochemical oxygen evolution reaction
3
作者 Saihang Zhang Senchuan Huang +8 位作者 Fengzhan Sun Yinghui Li Li Ren Hao Xu Zhao Li Yifei Liu Wei Li Lina Chong Jianxin Zou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期194-201,I0005,共9页
High efficiency,cost-effective and durable electrocatalysts are of pivotal importance in energy conversion and storage systems.The electro-oxidation of water to oxygen plays a crucial role in such energy conversion te... High efficiency,cost-effective and durable electrocatalysts are of pivotal importance in energy conversion and storage systems.The electro-oxidation of water to oxygen plays a crucial role in such energy conversion technologies.Herein,we report a robust method for the synthesis of a bimetallic alkoxide for efficient oxygen evolution reaction(OER)for alkaline electrolysis,which yields current density of 10 mA cm^(-2)at an overpotential of 215 mV in 0.1 M KOH electrolyte.The catalyst demonstrates an excellent durability for more than 540 h operation with negligible degradation in activity.Raman spectra revealed that the catalyst underwent structure reconstruction during OER,evolving into oxyhydroxide,which was the active site proceeding OER in alkaline electrolyte.In-situ synchrotron X-ray absorption experiment combined with density functional theory calculation suggests a lattice oxygen involved electrocatalytic reaction mechanism for the in-situ generated nickel–iron bimetal-oxyhydroxide catalyst.This mechanism together with the synergy between nickel and iron are responsible for the enhanced catalytic activity and durability.These findings provide promising strategies for the rational design of nonnoble metal OER catalysts. 展开更多
关键词 oxygen evolution reaction Nickel-iron bi-metal alkoxide Lattice oxygen-mediated reaction mechanism Alkaline electrolysis ELECTROCATALYSTS
下载PDF
Steering surface reconstruction of hybrid metal oxides for efficient oxygen evolution reaction in water splitting and zinc-air batteries
4
作者 Jie Zhu Junxue Chen +7 位作者 Xida Li Kun Luo Zewei Xiong Zhiyu Zhou Wenyun Zhu Zhihong Luo Jingbin Huang Yibing Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期383-393,共11页
Surface reconstruction yields real active species in electrochemical oxygen evolution reaction(OER)conditions;however,rationally regulating reconstruction in a targeted manner for constructing highly active OER electr... Surface reconstruction yields real active species in electrochemical oxygen evolution reaction(OER)conditions;however,rationally regulating reconstruction in a targeted manner for constructing highly active OER electrocatalysts remains a formidable challenge.Here,an electrochemical activation strategy with selective etching was utilized to guide the reconstruction process of a hybrid cobalt-molybdenum oxide(CoMoO_(4)/Co_(3)O_(4)@CC)in a favorable direction to improve the OER performance.Both in-situ Raman and multiple ex-situ characterization tools demonstrate that controlled surface reconstruction can be easily achieved through Mo etching,with the formation of a dynamically stable amorphous-crystalline heterostructure.Theoretical calculations together with experimental results reveal that the synergistic effects between amorphous CoOOH and crystalline Co_(3)O_(4) are crucial in enhancing the catalytic performance.Consequently,the reconstructed CoMoO_(4)/Co_(3)O_(4)@CC exhibits a low overpotential of 250 mV to achieve a current density of 10 mA cm^(-2) in 1 M KOH,and more importantly it can be practiced in electrolytic water splitting and rechargeable zinc-air batteries devices,achieving ultra-long stability for over 500 and 1200 h,respectively.This work provides a promising route for the construction of high-performance electrocatalysts. 展开更多
关键词 ELECTROCATALYST oxygen evolution reaction Surface reconstruction Selective etching Amorphous-crystalline heterostructures
下载PDF
Rational Design of Cost-Effective Metal-Doped ZrO_(2)for Oxygen Evolution Reaction
5
作者 Yuefeng Zhang Tianyi Wang +4 位作者 Liang Mei Ruijie Yang Weiwei Guo Hao Li Zhiyuan Zeng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期385-396,共12页
The design of cost-effective electrocatalysts is an open challenging for oxygen evolution reaction(OER)due to the“stable-oractive”dilemma.Zirconium dioxide(ZrO_(2)),a versatile and low-cost material that can be stab... The design of cost-effective electrocatalysts is an open challenging for oxygen evolution reaction(OER)due to the“stable-oractive”dilemma.Zirconium dioxide(ZrO_(2)),a versatile and low-cost material that can be stable under OER operating conditions,exhibits inherently poor OER activity from experimental observations.Herein,we doped a series of metal elements to regulate the ZrO_(2)catalytic activity in OER via spin-polarized density functional theory calculations with van der Waals interactions.Microkinetic modeling as a function of the OER activity descriptor(G_(O*)-G_(HO*))displays that 16 metal dopants enable to enhance OER activities over a thermodynamically stable ZrO_(2)surface,among which Fe and Rh(in the form of single-atom dopant)reach the volcano peak(i.e.the optimal activity of OER under the potential of interest),indicating excellent OER performance.Free energy diagram calculations,density of states,and ab initio molecular dynamics simulations further showed that Fe and Rh are the effective dopants for ZrO_(2),leading to low OER overpotential,high conductivity,and good stability.Considering cost-effectiveness,single-atom Fe doped ZrO_(2)emerged as the most promising catalyst for OER.This finding offers a valuable perspective and reference for experimental researchers to design cost-effective catalysts for the industrial-scale OER production. 展开更多
关键词 oxygen evolution reaction Metal oxide ELECTROCATALYSIS Surface Pourbaix analysis DOPING
下载PDF
Nickel Sulfide Modified NiCu Nanoalloy with Excellent Oxygen Evolution Reaction Properties Prepared through Electrospinning and Heat Treatment
6
作者 李涛 凌帅 +1 位作者 ZHONG Shujie LOU Qiongyue 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期320-326,共7页
Ni^(2+)/Cu^(2+)/SO_(4)^(2-)/polyvinyl alcohol precursor fibers with uniform diameters were prepared through electrospinning.Nickel-based composite nanoalloys containing Ni,Cu,and S were prepared through heat treatment... Ni^(2+)/Cu^(2+)/SO_(4)^(2-)/polyvinyl alcohol precursor fibers with uniform diameters were prepared through electrospinning.Nickel-based composite nanoalloys containing Ni,Cu,and S were prepared through heat treatment in an Ar atmosphere.The experimental results show that the main components of the prepared nanoalloys are NiCu,Ni_(3)S_(2),Ni,and C.The nanoalloys exhibit fine grain sizes about 200-500 nm,which can increase with increasing heat treatment temperature.Electrochemical test results show that the nickel sulfidemodified NiCu nanoalloy composites exhibit excellent oxygen evolution reaction properties,and the oxygen evolution reaction properties gradually improve with the increasing heat treatment temperature.The sample prepared at 1 000℃ for 40 min show a low overpotential of 423 mV and a small Tafel slope of 134 mV·dec^(-1) at a current density of 10 mA·cm^(-2). 展开更多
关键词 NICU NANOALLOY Ni_(3)S_(2) structure transformation oxygen evolution reaction
下载PDF
Optimizing 3d spin polarization of CoOOH by in situ Mo doping for efficient oxygen evolution reaction
7
作者 Zhichao Jia Yang Yuan +6 位作者 Yanxing Zhang Xiang Lyu Chenhong Liu Xiaoli Yang Zhengyu Bai Haijiang Wang Lin Yang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期236-244,共9页
Transition-metal oxyhydroxides are attractive catalysts for oxygen evolution reactions(OERs).Further studies for developing transition-metal oxyhydroxide catalysts and understanding their catalytic mechanisms will ben... Transition-metal oxyhydroxides are attractive catalysts for oxygen evolution reactions(OERs).Further studies for developing transition-metal oxyhydroxide catalysts and understanding their catalytic mechanisms will benefit their quick transition to the next catalysts.Herein,Mo-doped CoOOH was designed as a high-performance model electrocatalyst with durability for 20 h at 10 mAcm−2.Additionally,it had an overpotential of 260 mV(glassy carbon)or 215 mV(nickel foam),which was 78 mV lower than that of IrO_(2)(338 mV).In situ,Raman spectroscopy revealed the transformation process of CoOOH.Calculations using the density functional theory showed that during OER,doped Mo increased the spin-up density of states and shrank the spin-down bandgap of the 3d orbits in the reconstructed CoOOH under the electrochemical activation process,which simultaneously optimized the adsorption and electron conduction of oxygen-related intermediates on Co sites and lowered the OER overpotentials.Our research provides new insights into the methodical planning of the creation of transition-metal oxyhydroxide OER catalysts. 展开更多
关键词 ELECTROCATALYST in situ Raman Mo-doped CoOOH oxygen evolution reaction
下载PDF
Study on the Preparation,the Magnetic Performance,and the Oxygen Evolution Reaction of LaMnO_(3+δ)
8
作者 Peng Fan Qirui Wu +2 位作者 Geming Wang Rahman Sheikh Tamjidur Chendong Shao 《Journal of Electronic Research and Application》 2024年第3期97-103,共7页
In this paper,a series of LaMnO_(3+δ)(LMOs)were successfully prepared by adjusting the sintering temperature using the sol-gel method with ABO3-type LMO oxides as the object of study.The results showed that with the ... In this paper,a series of LaMnO_(3+δ)(LMOs)were successfully prepared by adjusting the sintering temperature using the sol-gel method with ABO3-type LMO oxides as the object of study.The results showed that with the increase of sintering temperature,the O_(ads),oxygen vacancies,and Mn^(4+)content in the system gradually decreased,and the oxygen evolution reaction(OER)was subsequently weakened.Although the suitable Mn^(3+)/Mn^(4+)valence ratio(2.15:1)of the LMO700 sample created a strong ferromagnetic double-exchange effect,the high concentration of oxygen vacancies in LMO700 disturbed this effect and weakened its macro magnetism.This paper serves to contribute to the design and development of new magnetic perovskite electrocatalysts. 展开更多
关键词 Manganese oxides MICROSTRUCTURE Magnetic properties oxygen evolution reaction
下载PDF
Facet Engineering of Advanced Electrocatalysts Toward Hydrogen/Oxygen Evolution Reactions 被引量:6
9
作者 Changshui Wang Qian Zhang +7 位作者 Bing Yan Bo You Jiaojiao Zheng Li Feng Chunmei Zhang Shaohua Jiang Wei Chen Shuijian He 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第4期97-137,共41页
The electrocatalytic water splitting technology can generate highpurity hydrogen without emitting carbon dioxide,which is in favor of relieving environmental pollution and energy crisis and achieving carbon neutrality... The electrocatalytic water splitting technology can generate highpurity hydrogen without emitting carbon dioxide,which is in favor of relieving environmental pollution and energy crisis and achieving carbon neutrality.Electrocatalysts can effectively reduce the reaction energy barrier and increase the reaction efficiency.Facet engineering is considered as a promising strategy in controlling the ratio of desired crystal planes on the surface.Owing to the anisotropy,crystal planes with different orientations usually feature facet-dependent physical and chemical properties,leading to differences in the adsorption energies of oxygen or hydrogen intermediates,and thus exhibit varied electrocatalytic activity toward hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).In this review,a brief introduction of the basic concepts,fundamental understanding of the reaction mechanisms as well as key evaluating parameters for both HER and OER are provided.The formation mechanisms of the crystal facets are comprehensively overviewed aiming to give scientific theory guides to realize dominant crystal planes.Subsequently,three strategies of selective capping agent,selective etching agent,and coordination modulation to tune crystal planes are comprehensively summarized.Then,we present an overview of significant contributions of facet-engineered catalysts toward HER,OER,and overall water splitting.In particular,we highlight that density functional theory calculations play an indispensable role in unveiling the structure–activity correlation between the crystal plane and catalytic activity.Finally,the remaining challenges in facet-engineered catalysts for HER and OER are provided and future prospects for designing advanced facet-engineered electrocatalysts are discussed. 展开更多
关键词 Crystal facet engineering ANISOTROPY oxygen evolution reaction Hydrogen evolution reaction Theoretical simulations
下载PDF
Recent Advances of Transition Metal Basic Salts for Electrocatalytic Oxygen Evolution Reaction and Overall Water Electrolysis 被引量:5
10
作者 Bingrong Guo Yani Ding +4 位作者 Haohao Huo Xinxin Wen Xiaoqian Ren Ping Xu Siwei Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第4期238-260,共23页
Electrocatalytic oxygen evolution reaction(OER)has been recognized as the bottleneck of overall water splitting,which is a promising approach for sustainable production of H_(2).Transition metal(TM)hydroxides are the ... Electrocatalytic oxygen evolution reaction(OER)has been recognized as the bottleneck of overall water splitting,which is a promising approach for sustainable production of H_(2).Transition metal(TM)hydroxides are the most conventional and classical non-noble metal-based electrocatalysts for OER,while TM basic salts[M^(2+)(OH)_(2-x)(A_(m^(-))_(x/m),A=CO_(3)^(2−),NO_(3)^(−),F^(−),Cl^(−)]consisting of OH−and another anion have drawn extensive research interest due to its higher catalytic activity in the past decade.In this review,we summarize the recent advances of TM basic salts and their application in OER and further overall water splitting.We categorize TM basic salt-based OER pre-catalysts into four types(CO_(3)^(2−),NO_(3)^(−),F^(−),Cl^(−)according to the anion,which is a key factor for their outstanding performance towards OER.We highlight experimental and theoretical methods for understanding the structure evolution during OER and the effect of anion on catalytic performance.To develop bifunctional TM basic salts as catalyst for the practical electrolysis application,we also review the present strategies for enhancing its hydrogen evolution reaction activity and thereby improving its overall water splitting performance.Finally,we conclude this review with a summary and perspective about the remaining challenges and future opportunities of TM basic salts as catalysts for water electrolysis. 展开更多
关键词 Transition metal basic salts ELECTROCATALYTIC oxygen evolution reaction(OER) Overall water electrolysis
下载PDF
Metal organic polymers with dual catalytic sites for oxygen reduction and oxygen evolution reactions 被引量:2
11
作者 Sijia Liu Minghao Liu +4 位作者 Xuewen Li Shuai Yang Qiyang Miao Qing Xu Gaofeng Zeng 《Carbon Energy》 SCIE CSCD 2023年第5期127-137,共11页
Metal-organic frameworks and covalent organic frameworks have been widely employed in electrochemical catalysis owing to their designable skeletons,controllable porosities,and well-defined catalytic centers.However,th... Metal-organic frameworks and covalent organic frameworks have been widely employed in electrochemical catalysis owing to their designable skeletons,controllable porosities,and well-defined catalytic centers.However,the poor chemical stability and low electron conductivity limited their activity,and single-functional sites in these frameworks hindered them to show multifunctional roles in catalytic systems.Herein,we have constructed novel metal organic polymers(Co-HAT-CN and Ni-HAT-CN)with dual catalytic centers(metal-N_(4) and metal-N_(2))to catalyze oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).By using different metal centers,the catalytic activity and selectivity were well-tuned.Among them,Co-HAT-CN catalyzed the ORR in a 4e^(-)pathway,with a half-wave potential of 0.8 V versus RHE,while the Ni-HAT-CN catalyze ORR in a 2e^(-)pathway with H_(2)O_(2) selectivity over 90%.Moreover,the Co-HAT-CN delivered an overpotential of 350 mV at 10 mA cm^(-2) with a corresponding Tafel slope of 24 mV dec^(-1) for OER in a 1.0 M KOH aqueous solution.The experimental results revealed that the activities toward ORR were due to the M-N_(4) sites in the frameworks,and both M-N_(4) and M-N_(2) sites contributed to the OER.This work gives us a new platform to construct bifunctional catalysts. 展开更多
关键词 covalent organic frameworks metal organic polymers oxygen evolution reaction oxygen reduction reaction single atom catalysts
下载PDF
Ni_(3)Fe/Ni_(4)S_(3)/Ni/C Mixed Crystal Composite Nanofibers Prepared by Electrospinning and Heat Treatment Methods for Oxygen Evolution Reaction 被引量:1
12
作者 LI Tao ZHONG Shujie +5 位作者 LOU Qiongyue LING Shuai CHEN Jian MA Guohua YANG Mao WU Xiaoqiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第2期267-273,共7页
OER catalyst of Ni_(3)Fe/Ni_(4)S_(3)/Ni/C(NiFeSC series)mixed crystal composite nanofibers was prepared by electrospinning and atmospheric heat treatment process.The testing results indicate that the diameters of Ni_(... OER catalyst of Ni_(3)Fe/Ni_(4)S_(3)/Ni/C(NiFeSC series)mixed crystal composite nanofibers was prepared by electrospinning and atmospheric heat treatment process.The testing results indicate that the diameters of Ni_(3)Fe/Ni_(4)S_(3)/Ni/C composite nanofibers is about 200 nm,the grains size is about 1-3 nm,and the fiber surface is rough.The electrochemical test results show that the heterojunction of the prepared Ni_(3)Fe/Ni_(4)S_(3)/Ni/C hybrid crystal composite nanofiber has synergistic effect with sulfide,and exhibits good electrocatalytic activity of water decomposition and OER in alkaline system.The OER electrocatalytic performance of Ni_(3)Fe/Ni_(4)S_(3)/Ni/C composite electrode prepared via a heat treatment at 1000℃process was tested in 1 mol/L KOH electrolytes.The results show that the overpotential is about 298 mV,the Tafel slope is about 74 mV?dec-1,and the surface resistance is about 1.69Ω·cm^(2),at the current density of 10 mA·cm^(-2). 展开更多
关键词 mixed crystal composite material NANOFIBER NiFeSC oxygen evolution reaction(OER)
下载PDF
Progress on the mechanisms of Ru-based electrocatalysts for the oxygen evolution reaction in acidic media 被引量:1
13
作者 Yuanyuan Shi Han Wu +2 位作者 Jiangwei Chang Zhiyong Tang Siyu Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期220-238,I0008,共20页
Water electrolysis using proton-exchange membranes is one of the most promising technologies for carbon-neutral and sustainable energy production.Generally,the overall efficiency of water splitting is limited by the o... Water electrolysis using proton-exchange membranes is one of the most promising technologies for carbon-neutral and sustainable energy production.Generally,the overall efficiency of water splitting is limited by the oxygen evolution reaction(OER).Nevertheless,a trade-off between activity and stability exists for most electrocatalytic materials in strong acids and oxidizing media,and the development of efficient and stable catalytic materials has been an important focus of research.In this view,gaining in-depth insights into the OER system,particularly the interactions between reaction intermediates and active sites,is significantly important.To this end,this review introduces the fundamentals of the OER over Ru-based materials,including the conventional adsorbate evolution mechanism,lattice oxygen oxidation mechanism,and oxide path mechanism.Moreover,the up-to-date progress of representative modifications for improving OER performance is further discussed with reference to specific mechanisms,such as tuning of geometric,electronic structures,incorporation of proton acceptors,and optimization of metal-oxygen covalency.Finally,some valuable insights into the challenges and opportunities for OER electrocatalysts are provided with the aim to promote the development of next-generation catalysts with high activity and excellent stability. 展开更多
关键词 oxygen evolution reaction Ru-based electrocatalysts Acidic solutions Mechanism Proton-exchange membranes
下载PDF
Co-Ru alloy nanoparticles decorated onto two-dimensional nitrogen doped carbon nanosheets towards hydrogen/oxygen evolution reaction and oxygen reduction reaction 被引量:1
14
作者 Huizhen Wang Pengfei Yang +9 位作者 Xiaoyuan Sun Weiping Xiao Xinping Wang Minge Tian Guangrui Xu Zhenjiang Li Yubing Zhang Fusheng Liu Lei Wang Zexing Wu 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期286-294,I0008,共10页
Constructing highly-efficient electrocatalysts toward hydrogen evolution reaction(HER)/oxygen evolution reaction(OER)/oxygen reduction reaction(ORR)with excellent stability is quite important for the development of re... Constructing highly-efficient electrocatalysts toward hydrogen evolution reaction(HER)/oxygen evolution reaction(OER)/oxygen reduction reaction(ORR)with excellent stability is quite important for the development of renewable energy-related applications.Herein,Co-Ru based compounds supported on nitrogen doped two-dimensional(2D)carbon nanosheets(NCN)are developed via one step pyrolysis procedure(Co-Ru/NCN)for HER/ORR and following low-temperature oxidation process(Co-Ru@RuO_(x)/NCN)for OER.The specific 2D morphology guarantees abundant active sites exposure.Furthermore,the synergistic effects arising from the interaction between Co and Ru are crucial in enhancing the catalytic performance.Thus,the resulting Co-Ru/NCN shows remarkable electrocatalytic performance for HER(70 mV at 10 mA cm^(-2))in 1 M KOH and ORR(half-wave potential E_(1/2)=0.81 V)in 0.1 M KOH.Especially,the Co-Ru@RuO_(x)/NCN obtained by oxidation exhibits splendid OER performance in both acid(230 mV at 10 mA cm^(-2))and alkaline media(270 mV at 10 mA cm^(-2))coupled with excellent stability.Consequently,the fabricated two-electrode water-splitting device exhibits excellent performance in both acidic and alkaline environments.This research provides a promising avenue for the advancement of multifunctional nanomaterials. 展开更多
关键词 ELECTROCATALYST 2D Carbon nanosheet Hydrogen/oxygen evolution reaction oxygen reduction reaction WATER-SPLITTING
下载PDF
Tuned d-band states over lanthanum doped nickel oxide for efficient oxygen evolution reaction 被引量:1
15
作者 Ziyi Xiao Wei Zhou +7 位作者 Baopeng Yang Chengan Liao Qing Kang Gen Chen Min Liu Xiaohe Liu Renzhi Ma Ning Zhang 《Nano Materials Science》 EI CAS CSCD 2023年第2期228-236,共9页
The d-band state of materials is an important descriptor for activity of oxygen evolution reaction(OER).For NiO materials,there is rarely concern about tuning their d-band states to tailor the OER behaviors.Herein,NiO... The d-band state of materials is an important descriptor for activity of oxygen evolution reaction(OER).For NiO materials,there is rarely concern about tuning their d-band states to tailor the OER behaviors.Herein,NiO nanocrystals with doping small amount of La^(3+)were used to regulate d-band states for promoting OER activity.Density of states calculations based on density functional theory revealed that La^(3+)doping produced upper shift of d-band center,which would induce stronger electronic interaction between surface Ni atoms and species of oxygen evolution reaction intermediates.Further density functional theory calculation illustrated that La^(3+)doped NiO possessed reduced Gibbs free energy in adsorbing species of OER intermediate.Predicted by theoretical calculations,trace La^(3+)was introduced into crystal lattice of NiO nanoparticles.The La^(3+)doped NiO nanocrystal showed much promoted OER activity than corresponding pristine NiO product.Further electrochemical analysis revealed that La^(3+)doping into NiO increased the intrinsic activity such as improved active sites and reduced charge transfer resistance.The in-situ Raman spectra suggested that NiO phase in La^(3+)doped NiO could be better maintained than pristine NiO during the OER.This work provides an effective strategy to tune the d-band center of NiO for efficient electrocatalytic OER. 展开更多
关键词 Nickel oxide oxygen evolution reaction D-band center ELECTROCATALYSIS Water splitting
下载PDF
Robust and highly efficient electrocatalyst based on ZIF-67 and Ni^(2+) dimers for oxygen evolution reaction:In situ mechanistic insight 被引量:1
16
作者 Anna Dymerska Bartosz Środa +5 位作者 Krzysztof Sielicki Grzegorz Leniec Beata Zielińska Rustem Zairov Renat Nazmutdinov Ewa Mijowska 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期263-276,I0006,共15页
Electrochemical water splitting is a straightforward process that involves two distinct reactions:the oxygen evolution reaction(OER)which produces oxygen(O_(2))and the hydrogen evolution reaction(HER)which generates h... Electrochemical water splitting is a straightforward process that involves two distinct reactions:the oxygen evolution reaction(OER)which produces oxygen(O_(2))and the hydrogen evolution reaction(HER)which generates hydrogen(H_(2)).However,in the whole process,the OER is a bottleneck as it requires more energy than a four-electron reaction involving critical raw materials(such as RuO_(2)or IrO_(2))as electrocatalysts.Therefore,here,we address the challenge of erratic kinetics/limited durability of OER in water electrolysis,In this paper,we demonstrate that the deposition of ultrasmall amounts of nickel(Ⅱ)nitrate in zeolitic imidazolate framework-67(ZIF-67)can be used as a general approach to enhance the electrocatalytic performance of the framework.We investigated the influence of Ni(NO_(3))·x6H_(2)O loading on ZIF-67(from 0.1 to 0.0001 M)and found that ZIF-67 enriched with only 0.001 M of Ni(NO_(3))2·x6H_(2)O(ZIF-670.001 Ni)exhibited massive promotion in OER.The ZIF-670.001 Ni showed a large specific surface area of 2577 m^(2)g^(-1),a low overpotential of 299 mV,a lower Tafel slope of 94.1 mA dec^(-1),and an outstanding overpotential retention of 99.8%(at 50 mA cm^(-2)).By conducting electron paramagnetic resonance(EPR)measurements,we also discovered that the 0.001 M of Ni(NO_(3))_(2)·x6H_(2)O loading in ZIF-67 introduces Ni^(^(2+))dimers,which contribute to the enhanced electroactivity of the modified ZIF-67.This phenomenon was further revealed during density-functional theory(DFT)calculations,which allowed us to identify different possible forms of Ni^(^(2+))dimers and modeling of active centers.Along with in situ experiments,we provide mechanistic insight into the OER mechanism under alkaline conditions and found that it follows the lattice oxygen mechanism(LOM).Our study proposes a facile and efficient room-temperature route to boost the electrochemical performance of ZIF-67 in OER.For the first time,we demonstrate that modifying ZIF-67 with an ultrasmall amount of different nickel(Ⅱ)salts opens a general route to enhance its electroactivity during water-splitting reactions. 展开更多
关键词 ZIF-67 oxygen evolution reaction Nickel(Il)nitrate ELECTROCATALYSIS
下载PDF
Tuning the electronic structure of a metal-organic framework for an efficient oxygen evolution reaction by introducing minor atomically dispersed ruthenium 被引量:1
17
作者 Yuwen Li Yuhang Wu +5 位作者 Tongtong Li Mengting Lu Yi Chen Yuanjing Cui Junkuo Gao Guodong Qian 《Carbon Energy》 SCIE CSCD 2023年第2期61-71,共11页
The establishment of efficient oxygen evolution electrocatalysts is of great value but also challenging.Herein,a durable metal–organic framework(MOF)with minor atomically dispersed ruthenium and an optimized electron... The establishment of efficient oxygen evolution electrocatalysts is of great value but also challenging.Herein,a durable metal–organic framework(MOF)with minor atomically dispersed ruthenium and an optimized electronic structure is constructed as an efficient electrocatalyst.Significantly,the obtained NiRu_(0.08)-MOF with doping Ru only needs an overpotential of 187 mV at 10 mA cm^(-2) with a Tafel slop of 40 mV dec^(-1) in 0.1M KOH for the oxygen evolution reaction,and can work continuously for more than 300 h.Ultrahigh Ru mass activity is achieved,reaching 56.7 Ag^(-1)_(Ru) at an overpotential of 200 mV,which is 36 times higher than that of commercial RuO_(2).X-ray adsorption spectroscopy and density function theory calculations reveal that atomically dispersed ruthenium on metal sites in MOFs is expected to optimize the electronic structure of nickel sites,thus improving the conductivity of the catalyst and optimizing the adsorption energy of intermediates,resulting in significant optimization of electrocatalytic performance.This study could provide a new avenue for the design of efficient and stable MOF electrocatalysts. 展开更多
关键词 ELECTROCATALYSIS electronic structure metal-organic framework oxygen evolution reaction
下载PDF
Recent Advances in the Comprehension and Regulation of Lattice Oxygen Oxidation Mechanism in Oxygen Evolution Reaction 被引量:1
18
作者 Xiaokang Liu Zexing He +6 位作者 Muhammad Ajmal Chengxiang Shi Ruijie Gao Lun Pan Zhen‑Feng Huang Xiangwen Zhang Ji‑Jun Zou 《Transactions of Tianjin University》 EI CAS 2023年第4期247-253,共7页
Water electrolysis,a process for producing green hydrogen from renewable energy,plays a crucial role in the transition toward a sustainable energy landscape and the realization of the hydrogen economy.Oxygen evolution... Water electrolysis,a process for producing green hydrogen from renewable energy,plays a crucial role in the transition toward a sustainable energy landscape and the realization of the hydrogen economy.Oxygen evolution reaction(OER)is a critical step in water electrolysis and is often limited by its slow kinetics.Two main mechanisms,namely the adsorbate evolution mechanism(AEM)and lattice oxygen oxidation mechanism(LOM),are commonly considered in the context of OER.However,designing efficient catalysts based on either the AEM or the LOM remains a topic of debate,and there is no consensus on whether activity and stability are directly related to a certain mechanism.Considering the above,we discuss the characteristics,advantages,and disadvantages of AEM and LOM.Additionally,we provide insights on leveraging the LOM to develop highly active and stable OER catalysts in future.For instance,it is essential to accurately differentiate between reversible and irreversible lattice oxygen redox reactions to elucidate the LOM.Furthermore,we discuss strategies for effectively activating lattice oxygen to achieve controllable steady-state exchange between lattice oxygen and an electrolyte(OH^(-)or H_(2)O).Additionally,we discuss the use of in situ characterization techniques and theoretical calculations as promising avenues for further elucidating the LOM. 展开更多
关键词 Water electrolysis oxygen evolution reaction(OER) Adsorbate evolution mechanism(AEM) Lattice oxygen oxidation mechanism(LOM)
下载PDF
Recent progress of advanced manganese oxide-based materials for acidic oxygen evolution reaction: Fundamentals, performance optimization,and prospects
19
作者 Mengwei Guo Rongrong Deng +1 位作者 Chaowu Wang Qibo Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期537-553,I0015,共18页
The oxygen evolution reaction(OER) is the basis of various sustainable energy conversion and storage techniques,especially hydrogen production by water electrolysis.To realize the practical application of hydrogen ene... The oxygen evolution reaction(OER) is the basis of various sustainable energy conversion and storage techniques,especially hydrogen production by water electrolysis.To realize the practical application of hydrogen energy and mass-scale hydrogen production via water electrolysis,several obstacles,such as the multi-electron transfer OER process with sluggish kinetics and overall high reaction barrier,should be overcome.Manganese oxide-based(MnOx) materials,especially MnO_(2),have emerged as promising non-noble electrocatalysts for water electro-oxidation under acidic conditions due to their wellbalanced properties between catalytic activity and stability.This review introduces the fundamental understanding of the catalytic OER process on MnOx-based materials,including the conventional adsorbate evolution mechanism(AEM) and emerging lattice oxygen oxidation mechanism(LOM).The rational screening and prediction of MnOx-based catalysts that can stably catalyze OER in acid are summarized based on Pourbaix diagram analysis and thermodynamic density functional theory(DFT) calculations.Then,the up-to-date progress of upgrading the OER catalytic performance of MnOx-based catalysts by composite construction is reviewed.Afterward,feasible strategies to improve the electrocatalytic activity and lifetime of MnOx-based catalysts are systemically discussed in terms of crystal structure control,reasonable setting of working potential and electrolyte environment,optimal selection of acid-stable conductive supports,and self-healing engineering.Finally,future scientific challenges and research directions are outlined to guide the construction of advanced MnOx-based electrocatalysts for OER in acid. 展开更多
关键词 Manganese oxide-based materials Manganese dioxides ELECTROCATALYSTS oxygen evolution reaction Acidic solution
下载PDF
Super-exchange effect induced by early 3d metal doping on NiFe_(2)O_(4)(001)surface for oxygen evolution reaction
20
作者 Shuhao Wang Xinyan Liu +5 位作者 Xiang Chen Kamran Dastafkan Zhong-Heng Fu Xin Tan Qiang Zhang Chuan Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期21-29,I0002,共10页
Understanding the intrinsic activity of oxygen evolution reaction(OER) is crucial for catalyst design.To date,different metal-doping strategies have been developed to achieve this,but the involving mechanisms remain u... Understanding the intrinsic activity of oxygen evolution reaction(OER) is crucial for catalyst design.To date,different metal-doping strategies have been developed to achieve this,but the involving mechanisms remain unclear.Here,the electronic structure of the transition metal-doped NiFe_(2)O_(4)(001) surface is scrutinized for OER intrinsic activity using density functional theory calculations.Five 3d-orbital filling metals(Ti,V,Cr,Mn,and Co) are introduced as dopants onto A-and B-layers of the NiFe_(2)O_(4)(001) surface,and variation of oxidation states over Fe sites is observed on B-layer.Analyzing the magnetic moment and charge transfer of surface cation sites reveals that the variation of Fe oxidation states originates from the super-exchange effect and is influenced by the t2g-electron configuration of 3d metal dopants.This trend governs the generation of highly-active Fe3+sites on the B-layer,the adsorption strength of OER intermediates,i.e.,*O and*OH,and therefore the intrinsic activity.The finding of super-exchange mechanism induced by 3d early metal doping offers insights into electronic structure tailoring strategies for improving the intrinsic activity of OER electrocatalysts. 展开更多
关键词 oxygen evolution reaction NiFe spinel Oxidation states Super-exchange mechanism Density functional theory
下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部