The ZrO2 (9mol% Y2O3) coating was prepared evenly on the surface of MgO partially stabilized zirconia (Mg-PSZ) tube (oxygen sensor probe) by dipping the green Mg-PSZ tube in a ZrO2 (9mol% Y2O3) slurry and then co-fir...The ZrO2 (9mol% Y2O3) coating was prepared evenly on the surface of MgO partially stabilized zirconia (Mg-PSZ) tube (oxygen sensor probe) by dipping the green Mg-PSZ tube in a ZrO2 (9mol% Y2O3) slurry and then co-firing at 1750°C for 8 h. The double-cell method was employed to measure the electronic conductivity parameter and exam the reproducibility of the coated Mg- PSZ tube. The experimental results indicate that the good thermal shock resistance of the Mg-PSZ tube can be retained when the coating thickness is not more than 3.4 μm. The ZrO2 (9mol% Y2O3) coating reduces the electronic conductivity parameter remarka- bly, probably due to the lower electronic conductivity of Y2O,-stabilized ZrO2 than that of MgO-stabilized ZrO2. Moreover, the ZrO2 (9mol% Y2O3) coating can improve the reproducibility and accuracy of the Mg-PSZ tube significantly in the low oxygen measure- ment. The smooth surface feature and lower electronic conductivity of the coated Mg-PSZ tube should be responsible for this im- provement.展开更多
Previously,we had identified the various dynamic mechanisms of a wide range air to fuel ratio sensor operated in the engine exhaust by using the transfer function approach.In this study,we utilized these results to mo...Previously,we had identified the various dynamic mechanisms of a wide range air to fuel ratio sensor operated in the engine exhaust by using the transfer function approach.In this study,we utilized these results to model the real time sensor response to an engine exhaust excursion.In the fitting,we identified a new dynamic mechanism,which was not detected in the previous transfer function study.This new dynamic occurred at the stoichiometric point when the engine changed from rich to lean.This new mechanism involved the depletion of the adsorbed fuel species on the electrode surface by an oxidation process. The dynamics of this effect depends on the ratio of the diffusion flux of the sensor-coating layer to the total adsorbed gas species on the electrode surface.The smaller the ratio is,the slower the dynamic mechanism will be.展开更多
A thimble zirconia oxygen sensor electrolyte and their interface were observed with was prepared with YSZ. The surfaces of the Pt electrode, a scanning electron microscope (SEM).The sensor was examined with engine b...A thimble zirconia oxygen sensor electrolyte and their interface were observed with was prepared with YSZ. The surfaces of the Pt electrode, a scanning electron microscope (SEM).The sensor was examined with engine bench test to evaluate the essential performance. The basic function such as electromotive force output and response time was discussed. The oscillograph trace was also obtained and analyzed with four different frequencies. The experimental results reveal that the oxygen sensor has high performances meeting the demands of practical applications..展开更多
Oxygen(O_(2))-sensing matrices are promising tools for the live monitoring of extracellular O_(2) consumption levels in long-term cell cultures.In this study,ratiometric O_(2)-sensing membranes were prepared by electr...Oxygen(O_(2))-sensing matrices are promising tools for the live monitoring of extracellular O_(2) consumption levels in long-term cell cultures.In this study,ratiometric O_(2)-sensing membranes were prepared by electrospinning,an easy,low-cost,scalable,and robust method for fabricating nanofibers.Poly(ε-caprolactone)and poly(dimethyl)siloxane polymers were blended with tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II)dichloride,which was used as the O_(2)-sensing probe,and rhodamine B isothiocyanate,which was used as the reference dye.The functionalized scaffolds were morphologically characterized by scanning electron microscopy,and their physicochemical profiles were obtained by Fourier transform infrared spectroscopy,thermogravimetric analysis,and water contact angle measurement.The sensing capabilities were investigated by confocal laser scanning microscopy,performing photobleaching,reversibility,and calibration curve studies toward different dissolved O_(2)(DO)concentrations.Electrospun sensing nanofibers showed a high response to changes in DO concentrations in the physiological-pathological range from 0.5%to 20%and good stability under ratiometric imaging.In addition,the sensing systems were highly biocompatible for cell growth promoting adhesiveness and growth of three cancer cell lines,namely metastatic melanoma cell line SK-MEL2,breast cancer cell line MCF-7,and pancreatic ductal adenocarcinoma cell line Panc-1,thus recreating a suitable biological environment in vitro.These O_(2)-sensing biomaterials can potentially measure alterations in cell metabolism caused by changes in ambient O_(2)content during drug testing/validation and tissue regeneration processes.展开更多
A phase shift demodulation technique based on subtraction capable of measuring 0.03 phase degree limit between sinusoidal signals is presented in this paper. A self-gain module and a practical subtracter act the kerne...A phase shift demodulation technique based on subtraction capable of measuring 0.03 phase degree limit between sinusoidal signals is presented in this paper. A self-gain module and a practical subtracter act the kernel parts of the phase shift demodulation system. Electric signals in different phases are used to verify the performance of the system. In addition, a new designed optical source, laser fiber differential source (LFDS), capable of generating mini phase is used to further verify the system reliability. R-square of 0.99997 in electric signals and R-square of 0.99877 in LFDS are achieved, and 0.03 degree measurement limit is realized in experiments. Furthermore, the phase shift demodulation system is applied to the fluorescence phase based oxygen sensors to realize the fundamental function. The experimental results reveal that a good repetition and better than 0.02% oxygen concentration measurement accuracy are realized. In addition, the phase shift demodulation system can be easily integrated to other applications.展开更多
MoO3 nanobelts (NBs) having different properties have been synthesized via a physical vapor deposition (PVD) method. The crystallographic structures and morphologies of the NBs were characterized by X-ray diffract...MoO3 nanobelts (NBs) having different properties have been synthesized via a physical vapor deposition (PVD) method. The crystallographic structures and morphologies of the NBs were characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. Electrical measurements were performed and the profound piezoresistive effect in MoO3 experimentally studied and verified. Factors that influence the gauge factor, such as NB size, doping concentration and atmosphere composition, are discussed and analyzed. Gas sensing performance was also tested in devices and it was demonstrated that by applying strain to the gas sensor, its sensing performance could be effectively tuned and enhanced. This study provides the first demonstration of significant piezoresistivity in MoO3 NBs and the first illustration of a generic mechanism by means of which this effect can be coupled with other electronic modulation measures to afford better device performance and broader material functionality.展开更多
The use of optical sensors for oxygen measurement is becoming more important because of their capability for low-cost and direct measurement,but as yet,little has been reported about their long-term performance.Phosph...The use of optical sensors for oxygen measurement is becoming more important because of their capability for low-cost and direct measurement,but as yet,little has been reported about their long-term performance.Phosphorescent sensors based on platinum octaethylporphyrin(PtOEP)embedded in polymer matrices tend to degrade with time.To reduce the rate of degradation,sensor films were fabricated and then coated with a layer of polydimethylsiloxane(PDMS)and tested in a six-month study.The PDMS-coated sensors showed an average degradation rate of〜0.073%/day,compared to〜0.18%/day for uncoated sensors.Titania beads were also incorporated into the films to increase light scattering and improve the response;these beads compensated to some degree for the absorption due to the PDMS films.The films with titania beads improved the response significantly(about 40%)compared to the films without titania beads.Incorporation of titania beads also moderately improved the aging characteristics.展开更多
With the advent of the 5G era and the rise of the Internet of Things,various sensors have received unprecedented attention,especially wearable and stretchable sensors in the healthcare field.Here,a stretchable,self-he...With the advent of the 5G era and the rise of the Internet of Things,various sensors have received unprecedented attention,especially wearable and stretchable sensors in the healthcare field.Here,a stretchable,self-healable,self-adhesive,and room-temperature oxygen sensor with excellent repeatability,a full concentration detection range(0-100%),low theoretical limit of detection(5.7 ppm),high sensitivity(0.2%/ppm),good linearity,excellent temperature,and humidity tolerances is fabricated by using polyacrylamide-chitosan(PAM-CS)double network(DN)organohydrogel as a novel transducing material.The PAM-CS DN organohydrogel is transformed from the PAM-CS composite hydrogel using a facile soaking and solvent replacement strategy.Compared with the pristine hydrogel,the DN organohydrogel displays greatly enhanced mechanical strength,moisture retention,freezing resistance,and sensitivity to oxygen.Notably,applying the tensile strain improves both the sensitivity and response speed of the organohydrogel-based oxygen sensor.Furthermore,the response to the same concentration of oxygen before and after self-healing is basically the same.Importantly,we propose an electrochemical reaction mechanism to explain the positive current shift of the oxygen sensor and corroborate this sensing mechanism through rationally designed experiments.The organohydrogel oxygen sensor is used to monitor human respiration in real-time,verifying the feasibility of its practical application.This work provides ideas for fabricating more stretchable,self-healable,self-adhesive,and high-performance gas sensors using ion-conducting organohydrogels.展开更多
(Bi2O3)0.73(Y2O3)0.27 fine powders prepared by wet chemical precipitation method were cold isostatically pressed to form solid electrolyte tubes, and sintered at 900 ℃ for 10 h in the air. Their pumping oxygen ch...(Bi2O3)0.73(Y2O3)0.27 fine powders prepared by wet chemical precipitation method were cold isostatically pressed to form solid electrolyte tubes, and sintered at 900 ℃ for 10 h in the air. Their pumping oxygen characteristics in non-dehydrated Ar gas were investigated, where a ZrO2 (Y2O3 stabilized) oxygen sensor was used to measure the oxygen partial pressure Po2. The results showed that the Po2 value reached magnitudes of 1×10^-2-1×10^-10 Pa at the applied pumping oxygen voltage of 0.5 V, 1×10^-37-1×10^-27 Pa at 1.0 V and 1×10^-53-1×10^47 Pa at 2.0 V within the temperature range from 550 to 650 ℃. Moreover, no cracks were found in the tested solid electrolyte tubes. Thus, the Bi2O3-Y2O3 system might be used in solid electrolyte oxygen pump for purifying gases.展开更多
The thermal equilibrium state of the reference electrode was investigated. The results show that the temperature difference between the inside and the outside of zirconia tube was very small and the Seebeck effect can...The thermal equilibrium state of the reference electrode was investigated. The results show that the temperature difference between the inside and the outside of zirconia tube was very small and the Seebeck effect can be ignored after the sensor was dipped into liquid steel for more than 2 s. A special sensor was designed to test the relation between the EMF (electromotive force) of sensor and the thermal equilibrium state of the reference elec- trode. Based on these results, it is suggested that the peak in EMF curve was caused by the change of oxygen potential in reference electrode before the thermal equilibrium was reached. If NiO was added by 2 M- 5 M to the Cr/Cr2O3 reference electrode, the peak in EMF curve could be eliminated.展开更多
Oxygenation of tissues plays an important role in the development and progression of tumor to treatment effects.Method of metalloporphyrines phosphorescence quenching by oxygen is one of the ways to measure dynamics o...Oxygenation of tissues plays an important role in the development and progression of tumor to treatment effects.Method of metalloporphyrines phosphorescence quenching by oxygen is one of the ways to measure dynamics of the oxygen concentration in the tissues by phosphorescence lifetime imaging of meso-tetra(sulfophenyl)tetrabenzoporphyrin Pd(Ⅱ)(TBP)using the time-correlated single photon counting(TCSPC)method.It has been shown that phosphorescence lifetime of the sensor in S37 tumor in vivo varied in the range of 130 to 290μs after both topical and intravenous administration of TBP.It indicates that oxygen level in tumors was lower compared to normal tissues where TBP phosphorescence has not been detected.Phosphorescence lifetimes of TBP increased in the solid tumor and in the muscle after photodynamic therapy of solid tumor that demonstrates oxygen consumption during treatment and possibly stopping the blood flow and hence the oxygen supply to the tissues.展开更多
The properties and applications of ZrO_2-Y_2O_3 material used as oxygen sensor were studied.Oxygen sensors are studied by X-ray diffraction technique,microstructure determination and thermal shock resistance test,and ...The properties and applications of ZrO_2-Y_2O_3 material used as oxygen sensor were studied.Oxygen sensors are studied by X-ray diffraction technique,microstructure determination and thermal shock resistance test,and are tested on the spot.Oxygen sensors made from the sintered dense ZrO_2 stabilized by Y_2O_3 can be used to measure the oxygen concentration in molten steel at 1600℃.The data obtained are stable and reliable, and the thermal shock resistance is high.The oxygen concentration is measured at(1~150)×10^(-4)% with re- sponse time of 2~3s.展开更多
A new technique for manufacture of the oxygen sensor used for metallurgical process has been developed.The powder of MgO-PSZ was prepared by coprecipitation.The MgOPSZ tube was prepared by powder injection molding(PIM...A new technique for manufacture of the oxygen sensor used for metallurgical process has been developed.The powder of MgO-PSZ was prepared by coprecipitation.The MgOPSZ tube was prepared by powder injection molding(PIM).The final sintered tube was assembled into oxygen cell,then tested in laboratory and on RH vessel.The results showed that the thermal shock resistance of MgO-PSZ matrix is strong enough for determining the active oxygen concentration in steel melt.The reproducibility of the EMF measurement is very good.The structure of the tube has been analysed by means of SEM and XRD.In addition,the characteristics such as the density and phase ratio in the product were compared with that of Shijiazhuang Maple Wood Sensor Company s product.展开更多
Four sensing membranes based on fluorescence quenching were prepared by sol-gel method and CA membrane method, and the Ru(Ⅱ) complexes, Ru( bpy)3 Cl2 and Ru(phen)3 Cl2 , were used as the indicators . The results indi...Four sensing membranes based on fluorescence quenching were prepared by sol-gel method and CA membrane method, and the Ru(Ⅱ) complexes, Ru( bpy)3 Cl2 and Ru(phen)3 Cl2 , were used as the indicators . The results indicate that the volume fraction of oxygen o2 have a linear relationship in large scale with tan0/tanfor all of the sensing membranes. They have super properties such as excellent limit of detection ,fast response time and good reproducibility. The stability of the sensing membranes made by sol-gel method is better than those by CA membranes, but the uniformity of the latter is better than that of the former.展开更多
An extended-life and ultra-low oxygen sensor has been fabricated by using polycrystalline Caβ″/β/α-Al2O3 as a solid electrolyte. Five reference electrodes CaO+O2, Caβ″/β/α-Al2O3 (powder)+O2,Cr+Cr2O3, Nb+NbO an...An extended-life and ultra-low oxygen sensor has been fabricated by using polycrystalline Caβ″/β/α-Al2O3 as a solid electrolyte. Five reference electrodes CaO+O2, Caβ″/β/α-Al2O3 (powder)+O2,Cr+Cr2O3, Nb+NbO and Mo+MoO2 were tested in order to select a better reference electrode for this sensor. The limit of determining oxygen activity and the extended-life of the sensor were also tested in this study.展开更多
Modified sensing membranes based on fluorescence quenching were prepared by the sol-gel method,using formamide as the drying control chemical additive,tetraethoxysilane as the main material,Ru(phen) 3Cl 2 as the ind...Modified sensing membranes based on fluorescence quenching were prepared by the sol-gel method,using formamide as the drying control chemical additive,tetraethoxysilane as the main material,Ru(phen) 3Cl 2 as the indicator.The membrane with the optimum thickness of 20-50μm is uniform and crack-free,in which the indicator has a very small leaking rate.The membrane is immersed in water for 50h,the membrane sensing parameter M decreases by less than 5%.The fiber optic oxygen sensor with the sensing membrane has a detection limit of 5×10 -6M(ppm),a response time of less than 30s,excellent reproducibility and stability.展开更多
A novel electrochemical oxygen sensor has been developed by using La beta -Al2O3 as solid electrolyte and Cr+Cr2O3 as reference electrode. The sensor not only can be used as normal oxygen sensor but also as an ultra-l...A novel electrochemical oxygen sensor has been developed by using La beta -Al2O3 as solid electrolyte and Cr+Cr2O3 as reference electrode. The sensor not only can be used as normal oxygen sensor but also as an ultra-low oxygen sensor. Especially, it is very sensitive to measure ultra-low oxygen in molten metal. For estimating the accuracy of La beta -Al2O3 oxygen sensor, two series of oxygen activities in molten iron at different oxygen contents and different temperature were measured by both La beta -Al2O3 oxygen sensor and ZrO2 oxygen sensor. The theoretical values of oxygen activities in molten iron (3.30%C, in mass fraction) at 1723K and 1745K were also evaluated for comparing the measuring results of two sensors. At last, the error of measurement for La beta -Al2O3 oxygen sensor was discussed too.展开更多
To establish a immobilization method of oxygen sensitive dye, a dissolved oxygen sensor based on a sol-gel matrix doped with ruthenium complex ([Ru(bpy)3]2+) as the oxygen-sensitive material is reported. The results i...To establish a immobilization method of oxygen sensitive dye, a dissolved oxygen sensor based on a sol-gel matrix doped with ruthenium complex ([Ru(bpy)3]2+) as the oxygen-sensitive material is reported. The results indicate that the I0 /I100 value of the [Ru(bpy)3]2+-doped in tetraethylorthosilane (TEOS) composite films are estimated to be 10.6, where I0 and I100 correspond to the detected fluorescence intensities in pure nitrogen saturated water and pure oxygen saturated water, respectively. Also, the Stern-Volmer plot shows a very good linearity at low dissolved oxygen concentrations. The response time of the composite films is 5 s upon switching from nitrogen saturated water to oxygen saturated water and 10 s from oxygen saturated water to nitrogen saturated water. The dissolved oxygen sensors based on the ruthenium complex/TEOS composite films exhibit greater sensitivity, stability and faster response time as compared to the existing ones. Furthermore, the thin films possess greatly minimized dye leaching effect.展开更多
In the paper, the authors analyse the rela- tionship between the electrical conductivity σ of ZrO_2 and the content of doped stabilizing agent by the Positron Annihilation Technique, and explain the change tendency ...In the paper, the authors analyse the rela- tionship between the electrical conductivity σ of ZrO_2 and the content of doped stabilizing agent by the Positron Annihilation Technique, and explain the change tendency of σ with the content of stabilizing agent. The research shows that 'number of effective vacancy' in material is a decisive factor causing change of σ.展开更多
Intelligent food packaging with the multisensory analysis is promising as the next generation technology of food packaging.The oxygen content in food packaging is one of the crucial parameters affecting the food quali...Intelligent food packaging with the multisensory analysis is promising as the next generation technology of food packaging.The oxygen content in food packaging is one of the crucial parameters affecting the food quality and shelf life.Caviar is among the most nutritious and costly food sources.Here,a photonic oxygen-sensing system,based on the time-resolved phosphorescence spectroscopy of a platinum complex,is developed for non-contact,non-intrusive,and real-time vacuum packaging quality control,and implemented for caviar packaging.The sensor is embedded in protective polyethylene layers and excited with a short-pulsed light emitting diode(LED)source.Integration of a blue pulsed light source,a fast and amplified silicon photodiode controlled by the Spartan-6 field programmable gate array(FPGA),and a long lifetime platinum complex results in a photonics-based oxygen sensor with a fast response and high sensitivity to the vacum packaging damage,which is suitable for caviar.It is revealed that applying the polyethylene layers protects the caviar from the platinum complex,leaching while not interfering with the sensor functionality.Characterizing the photonic system based on its sensitivity,repeatability,stability,and long-term operation demonstrates its capability for this application.展开更多
文摘The ZrO2 (9mol% Y2O3) coating was prepared evenly on the surface of MgO partially stabilized zirconia (Mg-PSZ) tube (oxygen sensor probe) by dipping the green Mg-PSZ tube in a ZrO2 (9mol% Y2O3) slurry and then co-firing at 1750°C for 8 h. The double-cell method was employed to measure the electronic conductivity parameter and exam the reproducibility of the coated Mg- PSZ tube. The experimental results indicate that the good thermal shock resistance of the Mg-PSZ tube can be retained when the coating thickness is not more than 3.4 μm. The ZrO2 (9mol% Y2O3) coating reduces the electronic conductivity parameter remarka- bly, probably due to the lower electronic conductivity of Y2O,-stabilized ZrO2 than that of MgO-stabilized ZrO2. Moreover, the ZrO2 (9mol% Y2O3) coating can improve the reproducibility and accuracy of the Mg-PSZ tube significantly in the low oxygen measure- ment. The smooth surface feature and lower electronic conductivity of the coated Mg-PSZ tube should be responsible for this im- provement.
文摘Previously,we had identified the various dynamic mechanisms of a wide range air to fuel ratio sensor operated in the engine exhaust by using the transfer function approach.In this study,we utilized these results to model the real time sensor response to an engine exhaust excursion.In the fitting,we identified a new dynamic mechanism,which was not detected in the previous transfer function study.This new dynamic occurred at the stoichiometric point when the engine changed from rich to lean.This new mechanism involved the depletion of the adsorbed fuel species on the electrode surface by an oxidation process. The dynamics of this effect depends on the ratio of the diffusion flux of the sensor-coating layer to the total adsorbed gas species on the electrode surface.The smaller the ratio is,the slower the dynamic mechanism will be.
文摘A thimble zirconia oxygen sensor electrolyte and their interface were observed with was prepared with YSZ. The surfaces of the Pt electrode, a scanning electron microscope (SEM).The sensor was examined with engine bench test to evaluate the essential performance. The basic function such as electromotive force output and response time was discussed. The oscillograph trace was also obtained and analyzed with four different frequencies. The experimental results reveal that the oxygen sensor has high performances meeting the demands of practical applications..
基金funding from the European Research Council (ERC) under the European Union’s (EU’s) Horizon 2020 research and innovation program ERC Starting Grant “INTERCELLMED” (No. 759959)the EU’s Horizon 2020 research and innovation program under grant agreement No. 953121 (FLAMIN-GO)+7 种基金the Associazione Italiana per la Ricerca contro il Cancro (AIRCMFAG-2019No. 22902)the “Tecnopolo per la medicina di precisione” (Tecno Med Puglia)-Regione Puglia: DGR n.2117 of 21/11/2018, B84I18000540002the Italian Ministry of Research (MUR) in the framework of the National Recovery and Resilience Plan (NRRP), “NFFA-DI” Grant (n. B53C22004310006), “I-PHOQS” Grant (n. B53C22001750006) and under the complementary actions to the NRRP, “Fit4MedRob” Grant (PNC0000007, n. B53C22006960001), “ANTHEM” Grant (PNC0000003, n. B53C22006710001), funded by Next Generation EUthe PRIN 2022 (2022CRFNCP_PE11_PRIN2022) funded by European Union-Next Generation EUthe financial support provided under the project “HEALTH-UNORTE: Setting-up biobanks and regenerative medicine strategies to boost research in cardiovascular, musculoskeletal, neurological, oncological, immunological, and infectious diseases” (reference NORTE-01-0145FEDER-000039) funded by the Norte Portugal Regional Coordination and Development Commission (CCDR-N) under the NORTE2020 Programthe AIRC Short-term Fellowship program
文摘Oxygen(O_(2))-sensing matrices are promising tools for the live monitoring of extracellular O_(2) consumption levels in long-term cell cultures.In this study,ratiometric O_(2)-sensing membranes were prepared by electrospinning,an easy,low-cost,scalable,and robust method for fabricating nanofibers.Poly(ε-caprolactone)and poly(dimethyl)siloxane polymers were blended with tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II)dichloride,which was used as the O_(2)-sensing probe,and rhodamine B isothiocyanate,which was used as the reference dye.The functionalized scaffolds were morphologically characterized by scanning electron microscopy,and their physicochemical profiles were obtained by Fourier transform infrared spectroscopy,thermogravimetric analysis,and water contact angle measurement.The sensing capabilities were investigated by confocal laser scanning microscopy,performing photobleaching,reversibility,and calibration curve studies toward different dissolved O_(2)(DO)concentrations.Electrospun sensing nanofibers showed a high response to changes in DO concentrations in the physiological-pathological range from 0.5%to 20%and good stability under ratiometric imaging.In addition,the sensing systems were highly biocompatible for cell growth promoting adhesiveness and growth of three cancer cell lines,namely metastatic melanoma cell line SK-MEL2,breast cancer cell line MCF-7,and pancreatic ductal adenocarcinoma cell line Panc-1,thus recreating a suitable biological environment in vitro.These O_(2)-sensing biomaterials can potentially measure alterations in cell metabolism caused by changes in ambient O_(2)content during drug testing/validation and tissue regeneration processes.
基金This work was supported by the National Natural Science Foundation of China (61475085), Science and Technology Development Project of Shandong Province (2014GGX101007), and the Fundamental Research Funds of Shandong University (2014YQ011).
文摘A phase shift demodulation technique based on subtraction capable of measuring 0.03 phase degree limit between sinusoidal signals is presented in this paper. A self-gain module and a practical subtracter act the kernel parts of the phase shift demodulation system. Electric signals in different phases are used to verify the performance of the system. In addition, a new designed optical source, laser fiber differential source (LFDS), capable of generating mini phase is used to further verify the system reliability. R-square of 0.99997 in electric signals and R-square of 0.99877 in LFDS are achieved, and 0.03 degree measurement limit is realized in experiments. Furthermore, the phase shift demodulation system is applied to the fluorescence phase based oxygen sensors to realize the fundamental function. The experimental results reveal that a good repetition and better than 0.02% oxygen concentration measurement accuracy are realized. In addition, the phase shift demodulation system can be easily integrated to other applications.
文摘MoO3 nanobelts (NBs) having different properties have been synthesized via a physical vapor deposition (PVD) method. The crystallographic structures and morphologies of the NBs were characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. Electrical measurements were performed and the profound piezoresistive effect in MoO3 experimentally studied and verified. Factors that influence the gauge factor, such as NB size, doping concentration and atmosphere composition, are discussed and analyzed. Gas sensing performance was also tested in devices and it was demonstrated that by applying strain to the gas sensor, its sensing performance could be effectively tuned and enhanced. This study provides the first demonstration of significant piezoresistivity in MoO3 NBs and the first illustration of a generic mechanism by means of which this effect can be coupled with other electronic modulation measures to afford better device performance and broader material functionality.
文摘The use of optical sensors for oxygen measurement is becoming more important because of their capability for low-cost and direct measurement,but as yet,little has been reported about their long-term performance.Phosphorescent sensors based on platinum octaethylporphyrin(PtOEP)embedded in polymer matrices tend to degrade with time.To reduce the rate of degradation,sensor films were fabricated and then coated with a layer of polydimethylsiloxane(PDMS)and tested in a six-month study.The PDMS-coated sensors showed an average degradation rate of〜0.073%/day,compared to〜0.18%/day for uncoated sensors.Titania beads were also incorporated into the films to increase light scattering and improve the response;these beads compensated to some degree for the absorption due to the PDMS films.The films with titania beads improved the response significantly(about 40%)compared to the films without titania beads.Incorporation of titania beads also moderately improved the aging characteristics.
基金support from the National Natural Science Foundation of China(61801525)the Guangdong Basic and Applied Basic Research Foundation(2020A1515010693)+1 种基金the Guangdong Natural Science Funds Grant(2018A030313400),the Science and Technology Program of Guangzhou(201904010456)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(2021qntd09).
文摘With the advent of the 5G era and the rise of the Internet of Things,various sensors have received unprecedented attention,especially wearable and stretchable sensors in the healthcare field.Here,a stretchable,self-healable,self-adhesive,and room-temperature oxygen sensor with excellent repeatability,a full concentration detection range(0-100%),low theoretical limit of detection(5.7 ppm),high sensitivity(0.2%/ppm),good linearity,excellent temperature,and humidity tolerances is fabricated by using polyacrylamide-chitosan(PAM-CS)double network(DN)organohydrogel as a novel transducing material.The PAM-CS DN organohydrogel is transformed from the PAM-CS composite hydrogel using a facile soaking and solvent replacement strategy.Compared with the pristine hydrogel,the DN organohydrogel displays greatly enhanced mechanical strength,moisture retention,freezing resistance,and sensitivity to oxygen.Notably,applying the tensile strain improves both the sensitivity and response speed of the organohydrogel-based oxygen sensor.Furthermore,the response to the same concentration of oxygen before and after self-healing is basically the same.Importantly,we propose an electrochemical reaction mechanism to explain the positive current shift of the oxygen sensor and corroborate this sensing mechanism through rationally designed experiments.The organohydrogel oxygen sensor is used to monitor human respiration in real-time,verifying the feasibility of its practical application.This work provides ideas for fabricating more stretchable,self-healable,self-adhesive,and high-performance gas sensors using ion-conducting organohydrogels.
基金the National Natural Science Foundation of China (50774018)
文摘(Bi2O3)0.73(Y2O3)0.27 fine powders prepared by wet chemical precipitation method were cold isostatically pressed to form solid electrolyte tubes, and sintered at 900 ℃ for 10 h in the air. Their pumping oxygen characteristics in non-dehydrated Ar gas were investigated, where a ZrO2 (Y2O3 stabilized) oxygen sensor was used to measure the oxygen partial pressure Po2. The results showed that the Po2 value reached magnitudes of 1×10^-2-1×10^-10 Pa at the applied pumping oxygen voltage of 0.5 V, 1×10^-37-1×10^-27 Pa at 1.0 V and 1×10^-53-1×10^47 Pa at 2.0 V within the temperature range from 550 to 650 ℃. Moreover, no cracks were found in the tested solid electrolyte tubes. Thus, the Bi2O3-Y2O3 system might be used in solid electrolyte oxygen pump for purifying gases.
文摘The thermal equilibrium state of the reference electrode was investigated. The results show that the temperature difference between the inside and the outside of zirconia tube was very small and the Seebeck effect can be ignored after the sensor was dipped into liquid steel for more than 2 s. A special sensor was designed to test the relation between the EMF (electromotive force) of sensor and the thermal equilibrium state of the reference elec- trode. Based on these results, it is suggested that the peak in EMF curve was caused by the change of oxygen potential in reference electrode before the thermal equilibrium was reached. If NiO was added by 2 M- 5 M to the Cr/Cr2O3 reference electrode, the peak in EMF curve could be eliminated.
文摘Oxygenation of tissues plays an important role in the development and progression of tumor to treatment effects.Method of metalloporphyrines phosphorescence quenching by oxygen is one of the ways to measure dynamics of the oxygen concentration in the tissues by phosphorescence lifetime imaging of meso-tetra(sulfophenyl)tetrabenzoporphyrin Pd(Ⅱ)(TBP)using the time-correlated single photon counting(TCSPC)method.It has been shown that phosphorescence lifetime of the sensor in S37 tumor in vivo varied in the range of 130 to 290μs after both topical and intravenous administration of TBP.It indicates that oxygen level in tumors was lower compared to normal tissues where TBP phosphorescence has not been detected.Phosphorescence lifetimes of TBP increased in the solid tumor and in the muscle after photodynamic therapy of solid tumor that demonstrates oxygen consumption during treatment and possibly stopping the blood flow and hence the oxygen supply to the tissues.
文摘The properties and applications of ZrO_2-Y_2O_3 material used as oxygen sensor were studied.Oxygen sensors are studied by X-ray diffraction technique,microstructure determination and thermal shock resistance test,and are tested on the spot.Oxygen sensors made from the sintered dense ZrO_2 stabilized by Y_2O_3 can be used to measure the oxygen concentration in molten steel at 1600℃.The data obtained are stable and reliable, and the thermal shock resistance is high.The oxygen concentration is measured at(1~150)×10^(-4)% with re- sponse time of 2~3s.
文摘A new technique for manufacture of the oxygen sensor used for metallurgical process has been developed.The powder of MgO-PSZ was prepared by coprecipitation.The MgOPSZ tube was prepared by powder injection molding(PIM).The final sintered tube was assembled into oxygen cell,then tested in laboratory and on RH vessel.The results showed that the thermal shock resistance of MgO-PSZ matrix is strong enough for determining the active oxygen concentration in steel melt.The reproducibility of the EMF measurement is very good.The structure of the tube has been analysed by means of SEM and XRD.In addition,the characteristics such as the density and phase ratio in the product were compared with that of Shijiazhuang Maple Wood Sensor Company s product.
基金Funded by The Key Scientific Project Foundation of Hubei Province (No.2001AA101A02) and Natural Science Foundation of Hubei Province (No.2001ABB074)
文摘Four sensing membranes based on fluorescence quenching were prepared by sol-gel method and CA membrane method, and the Ru(Ⅱ) complexes, Ru( bpy)3 Cl2 and Ru(phen)3 Cl2 , were used as the indicators . The results indicate that the volume fraction of oxygen o2 have a linear relationship in large scale with tan0/tanfor all of the sensing membranes. They have super properties such as excellent limit of detection ,fast response time and good reproducibility. The stability of the sensing membranes made by sol-gel method is better than those by CA membranes, but the uniformity of the latter is better than that of the former.
文摘An extended-life and ultra-low oxygen sensor has been fabricated by using polycrystalline Caβ″/β/α-Al2O3 as a solid electrolyte. Five reference electrodes CaO+O2, Caβ″/β/α-Al2O3 (powder)+O2,Cr+Cr2O3, Nb+NbO and Mo+MoO2 were tested in order to select a better reference electrode for this sensor. The limit of determining oxygen activity and the extended-life of the sensor were also tested in this study.
文摘Modified sensing membranes based on fluorescence quenching were prepared by the sol-gel method,using formamide as the drying control chemical additive,tetraethoxysilane as the main material,Ru(phen) 3Cl 2 as the indicator.The membrane with the optimum thickness of 20-50μm is uniform and crack-free,in which the indicator has a very small leaking rate.The membrane is immersed in water for 50h,the membrane sensing parameter M decreases by less than 5%.The fiber optic oxygen sensor with the sensing membrane has a detection limit of 5×10 -6M(ppm),a response time of less than 30s,excellent reproducibility and stability.
基金supported by National Natural Science Foundation of China under grant No.59374160.
文摘A novel electrochemical oxygen sensor has been developed by using La beta -Al2O3 as solid electrolyte and Cr+Cr2O3 as reference electrode. The sensor not only can be used as normal oxygen sensor but also as an ultra-low oxygen sensor. Especially, it is very sensitive to measure ultra-low oxygen in molten metal. For estimating the accuracy of La beta -Al2O3 oxygen sensor, two series of oxygen activities in molten iron at different oxygen contents and different temperature were measured by both La beta -Al2O3 oxygen sensor and ZrO2 oxygen sensor. The theoretical values of oxygen activities in molten iron (3.30%C, in mass fraction) at 1723K and 1745K were also evaluated for comparing the measuring results of two sensors. At last, the error of measurement for La beta -Al2O3 oxygen sensor was discussed too.
基金Funded by the Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials of Sichuan Province (No.10zxfk23)Scientific Research Project of Sichuan Normal University (No.11KYL06)
文摘To establish a immobilization method of oxygen sensitive dye, a dissolved oxygen sensor based on a sol-gel matrix doped with ruthenium complex ([Ru(bpy)3]2+) as the oxygen-sensitive material is reported. The results indicate that the I0 /I100 value of the [Ru(bpy)3]2+-doped in tetraethylorthosilane (TEOS) composite films are estimated to be 10.6, where I0 and I100 correspond to the detected fluorescence intensities in pure nitrogen saturated water and pure oxygen saturated water, respectively. Also, the Stern-Volmer plot shows a very good linearity at low dissolved oxygen concentrations. The response time of the composite films is 5 s upon switching from nitrogen saturated water to oxygen saturated water and 10 s from oxygen saturated water to nitrogen saturated water. The dissolved oxygen sensors based on the ruthenium complex/TEOS composite films exhibit greater sensitivity, stability and faster response time as compared to the existing ones. Furthermore, the thin films possess greatly minimized dye leaching effect.
文摘In the paper, the authors analyse the rela- tionship between the electrical conductivity σ of ZrO_2 and the content of doped stabilizing agent by the Positron Annihilation Technique, and explain the change tendency of σ with the content of stabilizing agent. The research shows that 'number of effective vacancy' in material is a decisive factor causing change of σ.
文摘Intelligent food packaging with the multisensory analysis is promising as the next generation technology of food packaging.The oxygen content in food packaging is one of the crucial parameters affecting the food quality and shelf life.Caviar is among the most nutritious and costly food sources.Here,a photonic oxygen-sensing system,based on the time-resolved phosphorescence spectroscopy of a platinum complex,is developed for non-contact,non-intrusive,and real-time vacuum packaging quality control,and implemented for caviar packaging.The sensor is embedded in protective polyethylene layers and excited with a short-pulsed light emitting diode(LED)source.Integration of a blue pulsed light source,a fast and amplified silicon photodiode controlled by the Spartan-6 field programmable gate array(FPGA),and a long lifetime platinum complex results in a photonics-based oxygen sensor with a fast response and high sensitivity to the vacum packaging damage,which is suitable for caviar.It is revealed that applying the polyethylene layers protects the caviar from the platinum complex,leaching while not interfering with the sensor functionality.Characterizing the photonic system based on its sensitivity,repeatability,stability,and long-term operation demonstrates its capability for this application.