Surgical treatments of acute myocardial infarction (MI) possess a high clinical effectiveness, but there are fixed limitations, related to the patient’s state, which are limited by medical resources and organizationa...Surgical treatments of acute myocardial infarction (MI) possess a high clinical effectiveness, but there are fixed limitations, related to the patient’s state, which are limited by medical resources and organizational problems. The development of new medical technologies provides a better and effective non-surgical treatment of acute MI and increases long-term prognosis in this category of patients. The study aims to investigate the influence of hyperbaric oxygenation treatment on clinical outcomes (survival rate and recurrent myocardial infarction (rMI)) during the five-year period of monitoring. The study involved 697 patients who suffered from acute MI, having undergone the standard treatment. The patients were randomly divided into two groups: Group 1 (reference, n = 363);Group 2 (test, n = 334). Patients of Group 2 were given the traditional treatment, accompanied with HBOT (isopression for forty minutes at a working pressure of 0.03 MPa). HBOT was applied first through the fifth day following MI. The treatment course included six cycles, once per day. The clinical assessment was focused on clinical outcome: rMI and mortality related to cardiovascular events. HBOT application that accompanied the acute MI with traditional pharmacotherapy has been proved to reduce rMI within five years following inpatient discharge (rMI rate was 14% in the reference group and 5.4% in the test group, χ2 = 13.3, р < 0.05). The combination of HBOT with traditional methods in treating acute MI makes it possible to raise the five-year survival rate from 84.4% up to 95.9%.展开更多
The microstructure and Ge-V photoluminescent properties of diamond particles treated by microwave oxygen plasma are investigated.The results show that in the first 5 min of microwave plasma treatment,graphite and diso...The microstructure and Ge-V photoluminescent properties of diamond particles treated by microwave oxygen plasma are investigated.The results show that in the first 5 min of microwave plasma treatment,graphite and disordered carbon on the surface of the particles are etched away,so that diamond with regular crystal plane,smaller lattice stress,and better crystal quality is exposed,producing a Ge-V photoluminescence(PL)intensity 4 times stronger and PL peak FWHM(full width at half maximum)value of 6.6 nm smaller than the as-deposited sample.It is observed that the cycles of‘diamond is converted into graphite and disordered carbon,then the graphite and disordered carbon are etched’can occur with the treatment time further increasing.During these cycles,the particle surface alternately appears smooth and rough,corresponding to the strengthening and weakening of Ge-V PL intensity,respectively,while the PL intensity is always stronger than that of the as-deposited sample.The results suggest that not only graphite but also disordered carbon weakens the Ge-V PL intensity.Our study provides a feasible way of enhancing the Ge-V PL properties and effectively controlling the surface morphology of diamond particle.展开更多
Recent studies have shown that induced expression of endogenous antioxidative enzymes thr- ough activation of the antioxidant response element/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway may be a neur...Recent studies have shown that induced expression of endogenous antioxidative enzymes thr- ough activation of the antioxidant response element/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway may be a neuroprotective strategy. In this study, rat cerebral cortical neurons cultured in vitro were pretreated with 10 ktM curcumin or post-treated with 5 pM curcumin, respectively before or after being subjected to oxygen-glucose deprivation and reoxygenation for 24 hours. Both pretreatment and post-treatment resulted in a significant decrease of cell injury as indicated by propidium iodide/Hoechst 33258 staining, a prominent increase of Nrf2 protein expression as indicated by western blot analysis, and a remarkable increase of protein expression and enzyme activity in whole cell lysates of thioredoxin before ischemia, after ischemia, and after reoxygenation. In addition, post-treatment with curcumin inhibited early DNA/RNA oxidation as indicated by immunocytochemistry and increased nuclear Nrf2 protein by inducing nuclear accumulation of Nrf2. These findings suggest that curcumin activates the expression of thi- oredoxin, an antioxidant protein in the Nrf2 pathway, and protects neurons from death caused by oxygen-glucose deprivation in an in vitro model of ischemia/reperfusion. We speculate that pharmacologic stimulation of antioxidant gene expression may be a promising approach to neu- roprotection after cerebral ischemia.展开更多
Pd-based nanocatalyst is a potential oxygen reduction oxidation(ORR)catalyst because of its high activity in alkaline medium and low cost.In this work,bimetallic Pd Au nanocatalysts are prepared by one-pot hydrotherma...Pd-based nanocatalyst is a potential oxygen reduction oxidation(ORR)catalyst because of its high activity in alkaline medium and low cost.In this work,bimetallic Pd Au nanocatalysts are prepared by one-pot hydrothermal method using triblock pluronic copolymers,poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)(PEO19-PPO69-PEO19)(P123)as reducer and stabilizer,and heat-treatment method is applied to regulate catalyst structure and improve catalyst activity.The results show that the heat treatment can agglomerate the catalyst to a certain extent,but effectively improve the crystallinity and alloying degree of the catalyst.The ORR performance of the Pd Au nanocatalysts obtained under different heat treatment conditions is systematically investigated.Compared with commercial Pd black and Pd Au catalyst before heat treatment,the ORR performance of Au Pd nanocatalyst obtained after heat treatment for one hour at 500℃ has been enhanced.The Pd Au nanocatalysts after heat treatment also display enhanced anti-methanol toxicity ability in acidic medium.展开更多
Objective Hyperbaric oxygen treatment(HBOT)has demonstrated efficacy in improving hearing levels of patients with idiopathic sudden sensorineural hearing loss(ISSHL);however,the underlying mechanisms are not well unde...Objective Hyperbaric oxygen treatment(HBOT)has demonstrated efficacy in improving hearing levels of patients with idiopathic sudden sensorineural hearing loss(ISSHL);however,the underlying mechanisms are not well understood.HBOT alleviates the inflammatory response,which is mediated by Toll-like receptor(TLR)4 and nuclear factor(NF)-κB.In this study we investigated whether HBOT attenuates inflammation in ISHHL patients via alteration of TLR4 and NF-κB expression.Methods ISHHL patients(n=120)and healthy control subjects(n=20)were enrolled in this study.Patients were randomly divided into medicine group treated with medicine only(n=60)and HBO group receiving both HBOT and medicine(n=60).Audiometric testing was performed pre-and posttreatment.TLR4,NF-кB,and TNF-αexpression in peripheral blood of ISSHL patients and healthy control subjects was assessed by ELISA before and after treatment.Results TLR4,NF-κB,and TNF-αlevels were upregulated in ISSHL patients relative to healthy control subjects;the levels were decreased following treatment and were lower in the HBO group than that in the medicine group post-treatment(P<0.05 and P<0.01).Conclusion HBOT alleviates hearing loss in ISSHL patients by suppressing the inflammatory response induced by TLR4 and NF-κB signaling.展开更多
The controlled introduction of oxygen vacancies(OVs)in photocatalysts has been demonstrated to be an efficient approach for improving the separation of photogenerated charge carriers,and thus,for enhancing the photoca...The controlled introduction of oxygen vacancies(OVs)in photocatalysts has been demonstrated to be an efficient approach for improving the separation of photogenerated charge carriers,and thus,for enhancing the photocatalytic performance of photocatalysts.In this study,a two‐step calcination method where ZIF‐8 was used as the precursor was explored for the synthesis of ZIF‐8‐derived ZnO nanoparticles with gradient distribution of OVs.Electron paramagnetic resonance measurements indicated that the concentration of OVs in the samples depended on the temperature treatment process.Ultraviolet–visible spectra supported that the two‐step calcined samples presented excellent light‐harvesting ability in the ultraviolet‐to‐visible light range.Moreover,it was determined that the two‐step calcined samples presented superior photocatalytic performance for the removal of NO,and inhibited the generation of NO2.These properties could be attributed to the contribution of the OVs present in the two‐step calcined samples to their photocatalytic performance.The electrons confined by the OVs could be transferred to O2 to generate superoxide radicals,which could oxidize NO to the final product,nitrate.In particular,the NO removal efficiency of Z 350‐400(which was a sample first calcined at 350℃ for 2 h,then at 400℃ for 1 h)was 1.5 and 4.6 times higher than that of Z 400(which was one‐step directly calcined at 400℃)and commercial ZnO,respectively.These findings suggested that OV‐containing metal oxides that derived from metal‐organic framework materials hold great promise as highly efficient photocatalysts for the removal of NO.展开更多
Graphitic carbon nitride(g-C3N4)-based photocatalysts have shown great potential in the splitting of water.However,the intrinsic drawbacks of g-C3N4,such as low surface area,poor diffusion,and charge separation effici...Graphitic carbon nitride(g-C3N4)-based photocatalysts have shown great potential in the splitting of water.However,the intrinsic drawbacks of g-C3N4,such as low surface area,poor diffusion,and charge separation efficiency,remain as the bottleneck to achieve highly efficient hydrogen evolution.Here,a hollow oxygen-incorporated g-C3N4 nanosheet(OCN)with an improved surface area of 148.5 m2 g^−1 is fabricated by the multiple thermal treatments under the N2/O2 atmosphere,wherein the C–O bonds are formed through two ways of physical adsorption and doping.The physical characterization and theoretical calculation indicate that the O-adsorption can promote the generation of defects,leading to the formation of hollow morphology,while the O-doping results in reduced band gap of g-C3N4.The optimized OCN shows an excellent photocatalytic hydrogen evolution activity of 3519.6μmol g^−1 h^−1 for~20 h,which is over four times higher than that of g-C3N4(850.1μmol g^−1 h^−1)and outperforms most of the reported g-C3N4 catalysts.展开更多
The state-of-the-art approaches for adjusting the structural characteristics of porous carbons are the aftertreatments, which are complicated and time consuming. In this work, a facile approach was developed, i.e., co...The state-of-the-art approaches for adjusting the structural characteristics of porous carbons are the aftertreatments, which are complicated and time consuming. In this work, a facile approach was developed, i.e., controlling the initial oxygen concentration in-situ during the direct carbonization of zeolitic imidazole framework-8(ZIF-8), to adjust the pore structure and prepare hierarchically porous carbons. The introduction of oxygen can significantly affect the crystalline and pore structures of porous carbons, and promote the pore widening and the formation of mesopores. An appropriate initial oxygen concentration can notably enhance the surface area and mesopore volume of porous carbon, and then improve the adsorption capacity toward methylene blue(MB) dye from water by 3.4 times. The developed approach is more efficient at lower carbonization temperature.Moreover, the introduction of oxygen can increase the ratio of HO\\C_O groups on the carbon surface, leading to enhanced interaction with MB molecules and higher adsorption capacity toward MB. The as-prepared porous carbons exhibit superior adsorption capacities toward MB dye as compared to the reported ZIF-8 derived carbons. These findings would aid the development of porous carbon materials with high performance.展开更多
The influence of oxygen content and heat treatment on the evolution of carbides in a powder metallurgy (PM) Ni-base superalloy was characterized. The results reveal that oxygen content has little influence on the pr...The influence of oxygen content and heat treatment on the evolution of carbides in a powder metallurgy (PM) Ni-base superalloy was characterized. The results reveal that oxygen content has little influence on the precipitation of carbides inside the particles. However, under the consolidated state, stable Ti oxides on the particle surface act as nuclei for the precipitation of prior particle boundaries (PPB). Also, oxygen can diffuse internally along grain boundaries under compressive stress, which favors the precipitation of carbides inside the particles. Therefore, a higher amount of carbides will appear with more oxygen content in the case of consolidated alloys. It is also observed that PPB can be disrupted into discontinuous particles at 1200℃, but this carbide network is hard to be eliminated completely. The combined MC-M23C6 morphology approves the nucleation and growth mechanism of carbide evolution.展开更多
Hydrogen peroxide(H2O2)is a very useful chemical reagent,but the current industrial methods for its production suffer from serious energy consumption problems.Using high-activity and high-selectivity catalysts to elec...Hydrogen peroxide(H2O2)is a very useful chemical reagent,but the current industrial methods for its production suffer from serious energy consumption problems.Using high-activity and high-selectivity catalysts to electrocatalyze the oxygen reduction reaction(ORR)through a two-electron(2e^-)pathway is a very promising route to produce H2O2.In this work,we obtained partially oxidized multi-walled carbon nanotubes(MWCNTs)with controlled structure and composition by oxidation with concentrated sulfate and potassium permanganate at 40℃ for 1 h(O-CNTs-40-1).The outer layers of O-CNTs-40-1 are damaged with defects and oxygen-containing functional groups,while the inner layers are maintained intact.The optimized structure and composition of the partially oxidized MWCNTs ensure that O-CNTs-40-1 possesses both a sufficient number of catalytic sites and good conductivity.The results of rotating ring disk electrode measurements reveal that,among all oxidized MWCNTs,O-CNTs-40-1 shows the greatest improvement in hydrogen peroxide selectivity(from ~ 30% to ~ 50%)and electron transfer number(from ~ 3.4 to ~ 3.0)compared to those of the raw MWCNTs.The results of electrochemical impedance spectroscopy measurements indicate that both the charge-transfer and intrinsic resistances of O-CNTs-40-1 are lower than those of the raw MWCNTs and of the other oxidized MWCNTs.Finally,direct tests of the H2O2 production confirm the greatly improved catalytic activity of O-CNTs-40-1 relative to that of the raw MWCNTs.展开更多
Hyperbaric oxygen therapy as a new treatment approach for Alzheimer’s disease(AD):Alongside the increase in life expectancy,the prevalence of age-related disorders,such as neurodegenerative diseases,is on the rise...Hyperbaric oxygen therapy as a new treatment approach for Alzheimer’s disease(AD):Alongside the increase in life expectancy,the prevalence of age-related disorders,such as neurodegenerative diseases,is on the rise.For example,AD,the most common form of dementia in the elderly,accounts for 60–80%of all dementia cases.展开更多
A flexible fibre biofilm reactor was developed for treatment of organic wastewaters.The hydrodynamic characteristics and mass transfer coefficients of oxygen were studied and compared with those of the conventional ac...A flexible fibre biofilm reactor was developed for treatment of organic wastewaters.The hydrodynamic characteristics and mass transfer coefficients of oxygen were studied and compared with those of the conventional activated sludge processes.Tracer experiments were performed to obtain the residence time distributions of the reactors.The results indicated that both reactors could be treated as mixed flow reactors.The effects of flow rates of water and air on the overall mass transfer coefficient of oxygen were investigated,and the correlations between the mass transfer coefficient and the ratio of flow rates were obtained.Compared to the conventional activated sludge reactor,the mass transfer coefficients in the flexible fibre reactor were similar to but slightly lower,and less sensitive to the variation in the ratio of flow rates.It indicated that the fibre packing in the reactor hindered the oxygen transfer to some extent.展开更多
As the global burden of diabetes is rapidly increasing,the incidence of diabetic foot ulcers is continuously increasing as the mean age of the world population increases and the obesity epidemic advances.A significant...As the global burden of diabetes is rapidly increasing,the incidence of diabetic foot ulcers is continuously increasing as the mean age of the world population increases and the obesity epidemic advances.A significant percentage of diabetic foot ulcers are caused by mixed micro and macro-vascular dysfunction leading to impaired perfusion of foot tissue.Left untreated,chronic limb-threatening ischemia has a poor prognosis and is correlated with limb loss and increased mortality;prompt treatment is required.In this review,the diagnostic challenges in diabetic foot disease are discussed and available data on minimally invasive treatment options such as endovascular revascularization,stem cells,and gene therapy are examined.展开更多
A novel Pressurized Enriched Oxygen Biological Activated Carbon (PRBAC) method in treating secondary effluent of textile dying-printing & alkali peeling wastewater was configured. The PRBAC reactor simply increased...A novel Pressurized Enriched Oxygen Biological Activated Carbon (PRBAC) method in treating secondary effluent of textile dying-printing & alkali peeling wastewater was configured. The PRBAC reactor simply increased reactor pressure to create an eurtched dissolved oxygen (DO) environment to stimulate the bioactivities of microbes on GAC surface for removing refractory organic matter. Rapid Small- Scaled Colunm Test (RSSCT) was carried out to evaluate the adsorption characteristics of target stream constituents, and over 80% COD components were poorly adsorbable while about 82.5% color inducing matter and 85% UV254 surrogated matter were readily adsorbable. Compared with performances of normal BAC reactor under conventional DO condition, PRBAC achieved 20%, 10% and 50% more removal in COD, color and NH3-N abatement.展开更多
The effect of steam-treatment to HZSM-5 zeolite and Mo/HZSM-5 with a steaming time range of 0.5-1 h on the catalytic performance of methane dehydro-aromatization (MDA) over Mo/HZSM-5 catalyst prepared with impregnat...The effect of steam-treatment to HZSM-5 zeolite and Mo/HZSM-5 with a steaming time range of 0.5-1 h on the catalytic performance of methane dehydro-aromatization (MDA) over Mo/HZSM-5 catalyst prepared with impregnation has been studied in detail in combination with the characterization of 1H MAS NMR technique. Both the deactivation rate constant (kd) and the Brtnsted acid sites per unit cell were calculated to quantitatively evaluate the stability of Mo/HZSM-5 catalysts treated with steam at 813 K before and after impregnation of molybdenum species, and the corresponding variation of their Brtnsted acid sites. The results reveal that a V-shape relationship between kd and the number of B 1 acid sites per unit cell is presented on Mo/HZSM-5 catalyst under the tested steam-treatment and reaction conditions.展开更多
Objective: Major seismic events leave their survivors trapped under the rubble leading to extensive muscle damage and its devastating sequale of hemodynamic and metabolic disturbances and acute renal failure. Hypoxemi...Objective: Major seismic events leave their survivors trapped under the rubble leading to extensive muscle damage and its devastating sequale of hemodynamic and metabolic disturbances and acute renal failure. Hypoxemia aggravated during each hemodialysis (HD) session is important in acute renal failure patients with massive tissue injury. We retrospectively analyzed the adjunctive role of hyperbaric-oxygen (HBO) therapy in patients treated with HD for acute renal failure due to crush injury in terms of dialysis duration. Patients and methods: 16 patients admitted after the Marmara earthquake to Istanbul Faculty of Medicine were treated with HBO. Only 8 (2M, 6F, mean age: 24.8 + 7.3 years) of them had required HD treatment. 29 (16M, 13F, mean age: 34.6 + 12.9 years) crush syndrome patients treated with HD but not with HBO were taken as controls and the clinical and laboratory data of the two groups were compared. Results: The mean duration time under the rubble for the HBO group was 9.4 + 3.2 hours. Mainly lower extremity fasciotomies were performed at 15.6 + 14.8 hours after extrication. There were no amputations in this group. There were three amputations in the control group. The mean number of HD sessions was 9.2 + 6.7/patient for 10.9+9.6 days until renal functions recovered and the patients had 27.4 + 15.6 HBO sessions until the recovery of their lesions. There were no correlations between the number of HBO sessions and any laboratory parameter nor the number of HD sessions. There was no statistical difference in the need for HD between the HBO and control group. Conclusions: Our results could not demonstrate any beneficial effect of HBO treatment in terms of HD duration;however, the valuable contribution of the HBO treatment was to increase the salvage of crushed limbs.展开更多
Acute pancreatitis(AP)is a common acute gastrointestinal disorder affecting approximately 20%of patients with systemic inflammatory responses that may cause pancreatic and peripancreatic fat necrosis.This condition of...Acute pancreatitis(AP)is a common acute gastrointestinal disorder affecting approximately 20%of patients with systemic inflammatory responses that may cause pancreatic and peripancreatic fat necrosis.This condition often progresses to multiple organ failure,significantly increasing morbidity and mortality.Oxidative stress,characterized by an imbalance between the body’s reactive oxygen species(ROS)and antioxidants,activates the inflammatory signaling pathways.Although the pathogenesis of AP is not fully understood,ROS are increasingly recognized as critical in the disease's progression and development.Modulating the oxidative stress pathway has shown efficacy in mitigating the progression of AP.Despite numerous basic studies examining this pathway,comprehensive reviews of recent research remain sparse.This systematic review offers an in-depth examination of the critical role of oxidative stress in the pathogenesis and progression of AP and evaluates the therapeutic potential of antioxidant interventions in its management.展开更多
Oxidative stress disturbs the balance between the production of reactive oxygen species(ROS)and the detoxification biological process.It plays an important role in the development and progression of many chronic disea...Oxidative stress disturbs the balance between the production of reactive oxygen species(ROS)and the detoxification biological process.It plays an important role in the development and progression of many chronic diseases.Upon exposure to oxidative stress or the inducers of ROS,the cellular nucleus undergoes some biological processes via different signaling pathways,such as stress adaption through the forkhead box O signaling pathway,inflammatory response through the IκB kinase/nuclear factor-κB signaling pathway,hypoxic response via the hypoxia-inducible factor/prolyl hydroxylase domain proteins pathway,DNA repair or apoptosis through the p53 signaling pathway,and antioxidant response through the Kelch-like ECH-associated protein 1/nuclear factor E2-related factor 2 signaling pathway.These processes are involved in many diseases.Therefore,oxidative stress has gained more attraction as a targeting process for disease treatment.Meanwhile,anti-oxidative stress agents have been widely explored in pre-clinical trials.However,only limited clinical trials are performed to evaluate the efficacy of anti-oxidative stress agents or antioxidants in diseases.In this letter,we further discuss the current clinical trials related to anti-oxidative stress treatment in different diseases.More pre-clinical studies and clinical trials are expected to use anti-oxidative stress strategies as disease treatment or dietary supplementation to improve disease treatment outcomes.展开更多
Objective To evaluate the effects of hyperbaric oxygen therapy (HBOT) on Glasgow Coma Scale (GCC) after traumatic brain injury (TBI) in patients. Methods One hundred and thirty-eight patients with traumatic brain inju...Objective To evaluate the effects of hyperbaric oxygen therapy (HBOT) on Glasgow Coma Scale (GCC) after traumatic brain injury (TBI) in patients. Methods One hundred and thirty-eight patients with traumatic brain injury were treated by routine therapy combined with HBOT and 29 patients by routine therapy.展开更多
BACKGROUND Due to the lack of published literature about treatment of refractory hepatopulmonary syndrome(HPS)after liver transplant(LT),this case adds information and experience on this issue along with a treatment w...BACKGROUND Due to the lack of published literature about treatment of refractory hepatopulmonary syndrome(HPS)after liver transplant(LT),this case adds information and experience on this issue along with a treatment with positive outcomes.HPS is a complication of end-stage liver disease,with a 10%-30%incidence in cirrhotic patients.LT can reverse the physiopathology of this process and restore normal oxygenation.However,in some cases,refractory hypoxemia persists,and extracorporeal membrane oxygenation(ECMO)can be used as a rescue therapy with good results.CASE SUMMARY A 59-year-old patient with alcohol-related liver cirrhosis and portal hypertension was included in the LT waiting list for HPS.He had good liver function(Model for End-Stage Liver Disease score 12,Child-Pugh class B7).He had pulmonary fibrosis and a mild restrictive respiratory pattern with a basal oxygen saturation of 82%.The macroaggregated albumin test result was>30.Spirometry demonstrated a forced expiratory volume in one second(FEV1)of 78%,forced vital capacity(FVC)of 74%,FEV1/FVC ratio of 81%,diffusion capacity for carbon monoxide of 42%,and carbon monoxide transfer coefficient of 57%.He required domiciliary oxygen at 2 L/min(16 h/d).The patient was admitted to the intensive care unit(ICU)and extubated in the first 24 h,needing high-flow therapy and non-invasive ventilation and inhaled nitric oxide afterwards.Reintubation was needed after 72 h.Due to the non-response to supportive therapies,installation of ECMO was decided with progressive recovery after 9 d.Extubation was possible on the tenth day,maintaining a high-flow nasal cannula and de-escalating to conventional oxygen therapy after 48 h.He was discharged from ICU on postoperative day(POD)20 with a 90%-92%oxygen saturation.Steroid recycling was needed twice for acute rejection.The patient was discharged from hospital on POD 27 with no symptoms,with an 89%-90%oxygen saturation.CONCLUSION Due to the favorable results observed,ECMO could become the central axis of treatment of HPS and refractory hypoxemia after LT.展开更多
文摘Surgical treatments of acute myocardial infarction (MI) possess a high clinical effectiveness, but there are fixed limitations, related to the patient’s state, which are limited by medical resources and organizational problems. The development of new medical technologies provides a better and effective non-surgical treatment of acute MI and increases long-term prognosis in this category of patients. The study aims to investigate the influence of hyperbaric oxygenation treatment on clinical outcomes (survival rate and recurrent myocardial infarction (rMI)) during the five-year period of monitoring. The study involved 697 patients who suffered from acute MI, having undergone the standard treatment. The patients were randomly divided into two groups: Group 1 (reference, n = 363);Group 2 (test, n = 334). Patients of Group 2 were given the traditional treatment, accompanied with HBOT (isopression for forty minutes at a working pressure of 0.03 MPa). HBOT was applied first through the fifth day following MI. The treatment course included six cycles, once per day. The clinical assessment was focused on clinical outcome: rMI and mortality related to cardiovascular events. HBOT application that accompanied the acute MI with traditional pharmacotherapy has been proved to reduce rMI within five years following inpatient discharge (rMI rate was 14% in the reference group and 5.4% in the test group, χ2 = 13.3, р < 0.05). The combination of HBOT with traditional methods in treating acute MI makes it possible to raise the five-year survival rate from 84.4% up to 95.9%.
基金the Key Project of the National Natural Science Foundation of China(Grant No.U1809210)the National Key Research and Development Program of China(Grant No.2016YFE0133200)+3 种基金the Belt and Road Initiative International Cooperation Project from Key Research and Development Program of Zhejiang Province,China(Grant No.2018C04021)the European Union’s Horizon 2020 Research and Innovation Staff Exchange Scheme(Grant No.734578)the Natural Science Foundation of Zhejiang Province,China(Grant No.LY18E020013)the International Science Technology Cooperation Program,China(Grant No.2014DFR51160).
文摘The microstructure and Ge-V photoluminescent properties of diamond particles treated by microwave oxygen plasma are investigated.The results show that in the first 5 min of microwave plasma treatment,graphite and disordered carbon on the surface of the particles are etched away,so that diamond with regular crystal plane,smaller lattice stress,and better crystal quality is exposed,producing a Ge-V photoluminescence(PL)intensity 4 times stronger and PL peak FWHM(full width at half maximum)value of 6.6 nm smaller than the as-deposited sample.It is observed that the cycles of‘diamond is converted into graphite and disordered carbon,then the graphite and disordered carbon are etched’can occur with the treatment time further increasing.During these cycles,the particle surface alternately appears smooth and rough,corresponding to the strengthening and weakening of Ge-V PL intensity,respectively,while the PL intensity is always stronger than that of the as-deposited sample.The results suggest that not only graphite but also disordered carbon weakens the Ge-V PL intensity.Our study provides a feasible way of enhancing the Ge-V PL properties and effectively controlling the surface morphology of diamond particle.
基金supported by grants from the National Natural Science Foundation of China,No.81171090Natural Science Foundation of Chongqing Education Committee of China,No.KJ110313+1 种基金Foundation of Key State Laboratory of Neurobiology of Fudan University in China,No.10-08Foundation of Key Laboratory of Ministry of Education of the Third Medical Military University in China
文摘Recent studies have shown that induced expression of endogenous antioxidative enzymes thr- ough activation of the antioxidant response element/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway may be a neuroprotective strategy. In this study, rat cerebral cortical neurons cultured in vitro were pretreated with 10 ktM curcumin or post-treated with 5 pM curcumin, respectively before or after being subjected to oxygen-glucose deprivation and reoxygenation for 24 hours. Both pretreatment and post-treatment resulted in a significant decrease of cell injury as indicated by propidium iodide/Hoechst 33258 staining, a prominent increase of Nrf2 protein expression as indicated by western blot analysis, and a remarkable increase of protein expression and enzyme activity in whole cell lysates of thioredoxin before ischemia, after ischemia, and after reoxygenation. In addition, post-treatment with curcumin inhibited early DNA/RNA oxidation as indicated by immunocytochemistry and increased nuclear Nrf2 protein by inducing nuclear accumulation of Nrf2. These findings suggest that curcumin activates the expression of thi- oredoxin, an antioxidant protein in the Nrf2 pathway, and protects neurons from death caused by oxygen-glucose deprivation in an in vitro model of ischemia/reperfusion. We speculate that pharmacologic stimulation of antioxidant gene expression may be a promising approach to neu- roprotection after cerebral ischemia.
基金Financial supports from the National Natural Science Foundation of China (21503120, 21403126)Hubei Provincial Natural Science Foundation of China (2018CFB659)Innovation Foundation from China Three Gorges University (2019SSPY150)
文摘Pd-based nanocatalyst is a potential oxygen reduction oxidation(ORR)catalyst because of its high activity in alkaline medium and low cost.In this work,bimetallic Pd Au nanocatalysts are prepared by one-pot hydrothermal method using triblock pluronic copolymers,poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)(PEO19-PPO69-PEO19)(P123)as reducer and stabilizer,and heat-treatment method is applied to regulate catalyst structure and improve catalyst activity.The results show that the heat treatment can agglomerate the catalyst to a certain extent,but effectively improve the crystallinity and alloying degree of the catalyst.The ORR performance of the Pd Au nanocatalysts obtained under different heat treatment conditions is systematically investigated.Compared with commercial Pd black and Pd Au catalyst before heat treatment,the ORR performance of Au Pd nanocatalyst obtained after heat treatment for one hour at 500℃ has been enhanced.The Pd Au nanocatalysts after heat treatment also display enhanced anti-methanol toxicity ability in acidic medium.
基金supported by Beijing Science and Technology Special Fund[grants number 2161100000116067]。
文摘Objective Hyperbaric oxygen treatment(HBOT)has demonstrated efficacy in improving hearing levels of patients with idiopathic sudden sensorineural hearing loss(ISSHL);however,the underlying mechanisms are not well understood.HBOT alleviates the inflammatory response,which is mediated by Toll-like receptor(TLR)4 and nuclear factor(NF)-κB.In this study we investigated whether HBOT attenuates inflammation in ISHHL patients via alteration of TLR4 and NF-κB expression.Methods ISHHL patients(n=120)and healthy control subjects(n=20)were enrolled in this study.Patients were randomly divided into medicine group treated with medicine only(n=60)and HBO group receiving both HBOT and medicine(n=60).Audiometric testing was performed pre-and posttreatment.TLR4,NF-кB,and TNF-αexpression in peripheral blood of ISSHL patients and healthy control subjects was assessed by ELISA before and after treatment.Results TLR4,NF-κB,and TNF-αlevels were upregulated in ISSHL patients relative to healthy control subjects;the levels were decreased following treatment and were lower in the HBO group than that in the medicine group post-treatment(P<0.05 and P<0.01).Conclusion HBOT alleviates hearing loss in ISSHL patients by suppressing the inflammatory response induced by TLR4 and NF-κB signaling.
文摘The controlled introduction of oxygen vacancies(OVs)in photocatalysts has been demonstrated to be an efficient approach for improving the separation of photogenerated charge carriers,and thus,for enhancing the photocatalytic performance of photocatalysts.In this study,a two‐step calcination method where ZIF‐8 was used as the precursor was explored for the synthesis of ZIF‐8‐derived ZnO nanoparticles with gradient distribution of OVs.Electron paramagnetic resonance measurements indicated that the concentration of OVs in the samples depended on the temperature treatment process.Ultraviolet–visible spectra supported that the two‐step calcined samples presented excellent light‐harvesting ability in the ultraviolet‐to‐visible light range.Moreover,it was determined that the two‐step calcined samples presented superior photocatalytic performance for the removal of NO,and inhibited the generation of NO2.These properties could be attributed to the contribution of the OVs present in the two‐step calcined samples to their photocatalytic performance.The electrons confined by the OVs could be transferred to O2 to generate superoxide radicals,which could oxidize NO to the final product,nitrate.In particular,the NO removal efficiency of Z 350‐400(which was a sample first calcined at 350℃ for 2 h,then at 400℃ for 1 h)was 1.5 and 4.6 times higher than that of Z 400(which was one‐step directly calcined at 400℃)and commercial ZnO,respectively.These findings suggested that OV‐containing metal oxides that derived from metal‐organic framework materials hold great promise as highly efficient photocatalysts for the removal of NO.
基金This work was supported by the National Science Foundation of China(51772152,51702129,51572114,51972150,21908110,and 51902161)Fundamental Research Funds for the Central Universities(30919011269,30919011110,and 1191030558)+3 种基金Y.W.thanks the Key University Science Research Project of Jiangsu province(16KJB430009)Y.Z.thanks for the support from the Postdoctoral Science Foundation(2018M630527)China Scholarship Council(201708320150)J.S.thanks the Natural Science Foundation of Jiangsu Province(BK20190479,1192261031693).
文摘Graphitic carbon nitride(g-C3N4)-based photocatalysts have shown great potential in the splitting of water.However,the intrinsic drawbacks of g-C3N4,such as low surface area,poor diffusion,and charge separation efficiency,remain as the bottleneck to achieve highly efficient hydrogen evolution.Here,a hollow oxygen-incorporated g-C3N4 nanosheet(OCN)with an improved surface area of 148.5 m2 g^−1 is fabricated by the multiple thermal treatments under the N2/O2 atmosphere,wherein the C–O bonds are formed through two ways of physical adsorption and doping.The physical characterization and theoretical calculation indicate that the O-adsorption can promote the generation of defects,leading to the formation of hollow morphology,while the O-doping results in reduced band gap of g-C3N4.The optimized OCN shows an excellent photocatalytic hydrogen evolution activity of 3519.6μmol g^−1 h^−1 for~20 h,which is over four times higher than that of g-C3N4(850.1μmol g^−1 h^−1)and outperforms most of the reported g-C3N4 catalysts.
基金Supported by the National Key R&D Program of China(2016YFB0301503)the National Natural Science Foundation of China(91534110,21776127)+1 种基金the Jiangsu Province Natural Science Foundation for Distinguished Young Scholars(BK20150044)the Jiangsu Province Natural Science Foundation(BK20160978)
文摘The state-of-the-art approaches for adjusting the structural characteristics of porous carbons are the aftertreatments, which are complicated and time consuming. In this work, a facile approach was developed, i.e., controlling the initial oxygen concentration in-situ during the direct carbonization of zeolitic imidazole framework-8(ZIF-8), to adjust the pore structure and prepare hierarchically porous carbons. The introduction of oxygen can significantly affect the crystalline and pore structures of porous carbons, and promote the pore widening and the formation of mesopores. An appropriate initial oxygen concentration can notably enhance the surface area and mesopore volume of porous carbon, and then improve the adsorption capacity toward methylene blue(MB) dye from water by 3.4 times. The developed approach is more efficient at lower carbonization temperature.Moreover, the introduction of oxygen can increase the ratio of HO\\C_O groups on the carbon surface, leading to enhanced interaction with MB molecules and higher adsorption capacity toward MB. The as-prepared porous carbons exhibit superior adsorption capacities toward MB dye as compared to the reported ZIF-8 derived carbons. These findings would aid the development of porous carbon materials with high performance.
基金supported by the Science and Technology Planning Foundation of Beijing (No.D09080300510901)the National Natural Science Foundation of China (No.51104007)
文摘The influence of oxygen content and heat treatment on the evolution of carbides in a powder metallurgy (PM) Ni-base superalloy was characterized. The results reveal that oxygen content has little influence on the precipitation of carbides inside the particles. However, under the consolidated state, stable Ti oxides on the particle surface act as nuclei for the precipitation of prior particle boundaries (PPB). Also, oxygen can diffuse internally along grain boundaries under compressive stress, which favors the precipitation of carbides inside the particles. Therefore, a higher amount of carbides will appear with more oxygen content in the case of consolidated alloys. It is also observed that PPB can be disrupted into discontinuous particles at 1200℃, but this carbide network is hard to be eliminated completely. The combined MC-M23C6 morphology approves the nucleation and growth mechanism of carbide evolution.
基金supported by the National Natural Science Foundation of China(21576299,21576300)Guangzhou Science and Technology Project(201607010104,201707010079)+3 种基金Science and Technology Planning Project of Guangdong Province(2017A050501009)the National Key Research and Development Program of China(2016YFB0101204)Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program(2016TQ03N322)the fundamental Research Funds for Central Universities(17lgzd14)~~
文摘Hydrogen peroxide(H2O2)is a very useful chemical reagent,but the current industrial methods for its production suffer from serious energy consumption problems.Using high-activity and high-selectivity catalysts to electrocatalyze the oxygen reduction reaction(ORR)through a two-electron(2e^-)pathway is a very promising route to produce H2O2.In this work,we obtained partially oxidized multi-walled carbon nanotubes(MWCNTs)with controlled structure and composition by oxidation with concentrated sulfate and potassium permanganate at 40℃ for 1 h(O-CNTs-40-1).The outer layers of O-CNTs-40-1 are damaged with defects and oxygen-containing functional groups,while the inner layers are maintained intact.The optimized structure and composition of the partially oxidized MWCNTs ensure that O-CNTs-40-1 possesses both a sufficient number of catalytic sites and good conductivity.The results of rotating ring disk electrode measurements reveal that,among all oxidized MWCNTs,O-CNTs-40-1 shows the greatest improvement in hydrogen peroxide selectivity(from ~ 30% to ~ 50%)and electron transfer number(from ~ 3.4 to ~ 3.0)compared to those of the raw MWCNTs.The results of electrochemical impedance spectroscopy measurements indicate that both the charge-transfer and intrinsic resistances of O-CNTs-40-1 are lower than those of the raw MWCNTs and of the other oxidized MWCNTs.Finally,direct tests of the H2O2 production confirm the greatly improved catalytic activity of O-CNTs-40-1 relative to that of the raw MWCNTs.
基金supported in part by the Israeli Ministry of Science,Technology and Space to UA(Grant number 3-12069)
文摘Hyperbaric oxygen therapy as a new treatment approach for Alzheimer’s disease(AD):Alongside the increase in life expectancy,the prevalence of age-related disorders,such as neurodegenerative diseases,is on the rise.For example,AD,the most common form of dementia in the elderly,accounts for 60–80%of all dementia cases.
文摘A flexible fibre biofilm reactor was developed for treatment of organic wastewaters.The hydrodynamic characteristics and mass transfer coefficients of oxygen were studied and compared with those of the conventional activated sludge processes.Tracer experiments were performed to obtain the residence time distributions of the reactors.The results indicated that both reactors could be treated as mixed flow reactors.The effects of flow rates of water and air on the overall mass transfer coefficient of oxygen were investigated,and the correlations between the mass transfer coefficient and the ratio of flow rates were obtained.Compared to the conventional activated sludge reactor,the mass transfer coefficients in the flexible fibre reactor were similar to but slightly lower,and less sensitive to the variation in the ratio of flow rates.It indicated that the fibre packing in the reactor hindered the oxygen transfer to some extent.
文摘As the global burden of diabetes is rapidly increasing,the incidence of diabetic foot ulcers is continuously increasing as the mean age of the world population increases and the obesity epidemic advances.A significant percentage of diabetic foot ulcers are caused by mixed micro and macro-vascular dysfunction leading to impaired perfusion of foot tissue.Left untreated,chronic limb-threatening ischemia has a poor prognosis and is correlated with limb loss and increased mortality;prompt treatment is required.In this review,the diagnostic challenges in diabetic foot disease are discussed and available data on minimally invasive treatment options such as endovascular revascularization,stem cells,and gene therapy are examined.
文摘A novel Pressurized Enriched Oxygen Biological Activated Carbon (PRBAC) method in treating secondary effluent of textile dying-printing & alkali peeling wastewater was configured. The PRBAC reactor simply increased reactor pressure to create an eurtched dissolved oxygen (DO) environment to stimulate the bioactivities of microbes on GAC surface for removing refractory organic matter. Rapid Small- Scaled Colunm Test (RSSCT) was carried out to evaluate the adsorption characteristics of target stream constituents, and over 80% COD components were poorly adsorbable while about 82.5% color inducing matter and 85% UV254 surrogated matter were readily adsorbable. Compared with performances of normal BAC reactor under conventional DO condition, PRBAC achieved 20%, 10% and 50% more removal in COD, color and NH3-N abatement.
基金supported by Foundation for University Key Teacher by the Education of Heilongjiang Province(No.1152G018)
文摘The effect of steam-treatment to HZSM-5 zeolite and Mo/HZSM-5 with a steaming time range of 0.5-1 h on the catalytic performance of methane dehydro-aromatization (MDA) over Mo/HZSM-5 catalyst prepared with impregnation has been studied in detail in combination with the characterization of 1H MAS NMR technique. Both the deactivation rate constant (kd) and the Brtnsted acid sites per unit cell were calculated to quantitatively evaluate the stability of Mo/HZSM-5 catalysts treated with steam at 813 K before and after impregnation of molybdenum species, and the corresponding variation of their Brtnsted acid sites. The results reveal that a V-shape relationship between kd and the number of B 1 acid sites per unit cell is presented on Mo/HZSM-5 catalyst under the tested steam-treatment and reaction conditions.
文摘Objective: Major seismic events leave their survivors trapped under the rubble leading to extensive muscle damage and its devastating sequale of hemodynamic and metabolic disturbances and acute renal failure. Hypoxemia aggravated during each hemodialysis (HD) session is important in acute renal failure patients with massive tissue injury. We retrospectively analyzed the adjunctive role of hyperbaric-oxygen (HBO) therapy in patients treated with HD for acute renal failure due to crush injury in terms of dialysis duration. Patients and methods: 16 patients admitted after the Marmara earthquake to Istanbul Faculty of Medicine were treated with HBO. Only 8 (2M, 6F, mean age: 24.8 + 7.3 years) of them had required HD treatment. 29 (16M, 13F, mean age: 34.6 + 12.9 years) crush syndrome patients treated with HD but not with HBO were taken as controls and the clinical and laboratory data of the two groups were compared. Results: The mean duration time under the rubble for the HBO group was 9.4 + 3.2 hours. Mainly lower extremity fasciotomies were performed at 15.6 + 14.8 hours after extrication. There were no amputations in this group. There were three amputations in the control group. The mean number of HD sessions was 9.2 + 6.7/patient for 10.9+9.6 days until renal functions recovered and the patients had 27.4 + 15.6 HBO sessions until the recovery of their lesions. There were no correlations between the number of HBO sessions and any laboratory parameter nor the number of HD sessions. There was no statistical difference in the need for HD between the HBO and control group. Conclusions: Our results could not demonstrate any beneficial effect of HBO treatment in terms of HD duration;however, the valuable contribution of the HBO treatment was to increase the salvage of crushed limbs.
基金Supported by the National Natural Science Foundation of China,No.8217030254.
文摘Acute pancreatitis(AP)is a common acute gastrointestinal disorder affecting approximately 20%of patients with systemic inflammatory responses that may cause pancreatic and peripancreatic fat necrosis.This condition often progresses to multiple organ failure,significantly increasing morbidity and mortality.Oxidative stress,characterized by an imbalance between the body’s reactive oxygen species(ROS)and antioxidants,activates the inflammatory signaling pathways.Although the pathogenesis of AP is not fully understood,ROS are increasingly recognized as critical in the disease's progression and development.Modulating the oxidative stress pathway has shown efficacy in mitigating the progression of AP.Despite numerous basic studies examining this pathway,comprehensive reviews of recent research remain sparse.This systematic review offers an in-depth examination of the critical role of oxidative stress in the pathogenesis and progression of AP and evaluates the therapeutic potential of antioxidant interventions in its management.
文摘Oxidative stress disturbs the balance between the production of reactive oxygen species(ROS)and the detoxification biological process.It plays an important role in the development and progression of many chronic diseases.Upon exposure to oxidative stress or the inducers of ROS,the cellular nucleus undergoes some biological processes via different signaling pathways,such as stress adaption through the forkhead box O signaling pathway,inflammatory response through the IκB kinase/nuclear factor-κB signaling pathway,hypoxic response via the hypoxia-inducible factor/prolyl hydroxylase domain proteins pathway,DNA repair or apoptosis through the p53 signaling pathway,and antioxidant response through the Kelch-like ECH-associated protein 1/nuclear factor E2-related factor 2 signaling pathway.These processes are involved in many diseases.Therefore,oxidative stress has gained more attraction as a targeting process for disease treatment.Meanwhile,anti-oxidative stress agents have been widely explored in pre-clinical trials.However,only limited clinical trials are performed to evaluate the efficacy of anti-oxidative stress agents or antioxidants in diseases.In this letter,we further discuss the current clinical trials related to anti-oxidative stress treatment in different diseases.More pre-clinical studies and clinical trials are expected to use anti-oxidative stress strategies as disease treatment or dietary supplementation to improve disease treatment outcomes.
文摘Objective To evaluate the effects of hyperbaric oxygen therapy (HBOT) on Glasgow Coma Scale (GCC) after traumatic brain injury (TBI) in patients. Methods One hundred and thirty-eight patients with traumatic brain injury were treated by routine therapy combined with HBOT and 29 patients by routine therapy.
文摘BACKGROUND Due to the lack of published literature about treatment of refractory hepatopulmonary syndrome(HPS)after liver transplant(LT),this case adds information and experience on this issue along with a treatment with positive outcomes.HPS is a complication of end-stage liver disease,with a 10%-30%incidence in cirrhotic patients.LT can reverse the physiopathology of this process and restore normal oxygenation.However,in some cases,refractory hypoxemia persists,and extracorporeal membrane oxygenation(ECMO)can be used as a rescue therapy with good results.CASE SUMMARY A 59-year-old patient with alcohol-related liver cirrhosis and portal hypertension was included in the LT waiting list for HPS.He had good liver function(Model for End-Stage Liver Disease score 12,Child-Pugh class B7).He had pulmonary fibrosis and a mild restrictive respiratory pattern with a basal oxygen saturation of 82%.The macroaggregated albumin test result was>30.Spirometry demonstrated a forced expiratory volume in one second(FEV1)of 78%,forced vital capacity(FVC)of 74%,FEV1/FVC ratio of 81%,diffusion capacity for carbon monoxide of 42%,and carbon monoxide transfer coefficient of 57%.He required domiciliary oxygen at 2 L/min(16 h/d).The patient was admitted to the intensive care unit(ICU)and extubated in the first 24 h,needing high-flow therapy and non-invasive ventilation and inhaled nitric oxide afterwards.Reintubation was needed after 72 h.Due to the non-response to supportive therapies,installation of ECMO was decided with progressive recovery after 9 d.Extubation was possible on the tenth day,maintaining a high-flow nasal cannula and de-escalating to conventional oxygen therapy after 48 h.He was discharged from ICU on postoperative day(POD)20 with a 90%-92%oxygen saturation.Steroid recycling was needed twice for acute rejection.The patient was discharged from hospital on POD 27 with no symptoms,with an 89%-90%oxygen saturation.CONCLUSION Due to the favorable results observed,ECMO could become the central axis of treatment of HPS and refractory hypoxemia after LT.