Surface ozone(O_(3))poses significant threats to public health,agricultural crops,and plants in natural ecosystems.Global warming is likely to increase future O_(3)mainly by altering atmospheric photochemical reaction...Surface ozone(O_(3))poses significant threats to public health,agricultural crops,and plants in natural ecosystems.Global warming is likely to increase future O_(3)mainly by altering atmospheric photochemical reactions and enhancing biogenic volatile organic compound(BVOC)emissions.To assess the impacts of the future 1.5 K climate target on O_(3)concentrations and ecological O_(3)exposure in China,numerical simulations were conducted using the CMAQ(Community Multiscale Air Quality)model during April-October 2018.Ecological O_(3)exposure was estimated using six indices(i.e.,M7,M24,N100,SUM60,W126,and AOT40f).The results show that the temperature rise increases the MDA8 O_(3)(maximum daily eight-hour average O_(3))concentrations by∼3 ppb and the number of O_(3)exceedance days by 10-20 days in the North China Plain(NCP),Yangtze River Delta(YRD),and Sichuan Basin(SCB)regions.All O_(3)exposure indices show substantial increases.M24 and M7 in eastern and southern China will rise by 1-3 ppb and 2-4 ppb,respectively.N100 increases by more than 120 h in the surrounding regions of Beijing.SUM60 increases by greater than 9 ppm h^(−1),W126 increases by greater than 15 ppm h^(−1)in Shaanxi and SCB,and AOT40f increases by 6 ppm h^(−1)in NCP and SCB.The temperature increase also promotes atmospheric oxidation capacity(AOC)levels,with the higher AOC contributed by OH radicals in southern China but by NO_(3)radicals in northern China.The change in the reaction rate caused by the temperature increase has a greater influence on O_(3)exposure and AOC than the change in BVOC emissions.展开更多
To estimate the impact of copying on the indoor air quality, and to investigate whether ozone emitted during such a process induces pathological oxidative stress and potential oxidative damage in the bodies of operato...To estimate the impact of copying on the indoor air quality, and to investigate whether ozone emitted during such a process induces pathological oxidative stress and potential oxidative damage in the bodies of operators. Methods 67 copying operators (CO) and 67 healthy volunteers (HV) were enrolled in a random control study, in which levels of lipoperoxide (LPO) in plasma and erythrocytes, and levels of vitamin C (VC), vitamin E (VE) and b-carotene (b-CAR) in plasma as well as activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in erythrocytes were determined by spectrophotometric methods. Results Compared with the HV group, the average values of LPO in plasma and erythrocytes in the CO group were significantly increased (P<0.0001), while those of VC, VE and b-CAR in plasma as well as those of SOD, CAT and GPX in erythrocytes in the CO group were significantly decreased (P<0.0001). Pearson product-moment correlation analysis showed that with increase of ozone level in copying sites and duration of exposure to ozone, the values of LPO in plasma and erythrocytes in the bodies of operators were gradually increased,while those of VC, VE, b-CAR, SOD, CAT and GPX were decreased in the same manner. Odds ratio (OR) of risk of biochemical parameters reflecting potential oxidative damage of the copying operators ranged from 4.440 to 13.516, and 95 % CI of OR was from 2.113 to 34.061. Reliability coefficient () of the biochemical parameters used to reflect the potential oxidative damage of the operators was 0.8156, standardized item =0.9929, P<0.0001. Conclusion Findings in the present study suggest that there exist a series of free radical chain reactions and pathological oxidative stress induced by high dose ozone in the operators, thereby causing potential oxidative and lipoperoxidative damages in their bodies.展开更多
Chronic exposure to low doses of ozone similar to a day of high pollution in Mexico City causes a state of oxidative stress. This produces a progressive neurodegeneration in hippocampus of rats exposed to the gas. The...Chronic exposure to low doses of ozone similar to a day of high pollution in Mexico City causes a state of oxidative stress. This produces a progressive neurodegeneration in hippocampus of rats exposed to the gas. The aim of this study was to analyze the effect of chronic exposure on the changes in the blood-brain barrier in rats exposed to low doses of ozone. Method: each group received one of the following treatments, control group received air without ozone, and groups 2, 3, 4, 5, and 6 received ozone doses of 0.25 ppm for 4 h daily during 7, 15, 30, 60 and 90 days respectively. Each group was processed to inmunohistochemical technique against of the following antibody: blood-brain barrier, guanylyl cyclase, Iba-1, GFAP, NFκ-B, TNF-α. The results show that there is a correlation between the time exposure of ozone and the progressive damage, on the blood-brain barrier rupture, finally causing edema of endothelial cell, increase in guanylyl cyclase type 1, thickening of the processes and astrocytes foot, and an increase in the expression of factors NFκ-B and TNF-α at 30 and 60 days of exposure to this gas. All the above indicates that the chronic state of oxidative stress causes a neurodegeneration process, accompanied by disruption of the blood-brain barrier likely to occur in the Alzheimer’s disease.展开更多
Objective: To study the effects of ozone combined with sodium hyaluronate intracavitary injection on inflammatory mediators and oxidative stress in knee osteoarthritis. Methods:Patients who were diagnosed with moderat...Objective: To study the effects of ozone combined with sodium hyaluronate intracavitary injection on inflammatory mediators and oxidative stress in knee osteoarthritis. Methods:Patients who were diagnosed with moderate to severe knee osteoarthritis in Tangshan Hongci Hospital between July 2014 and March 2017 were selected and randomly divided into two groups, experimental group accepted ozone combined with sodium hyaluronate intracavitary injection, and control group accepted intracavitary injection of sodium hyaluronate. The joint fluid samples were collected before and after treatment respectively to determine the contents of inflammatory and oxidative stress signal molecules, inflammatory mediators and oxidative stress molecules. Results: After treatment, p38MAPK, MEK-3/6, NF-kB, TAK1, CXCL12, YKL40, IL1β, TNF , PGE2, MDA, GRP78 and CHOP levels in joint fluid of both groups of patients were significantly lower than those before treatment whereas GPx levels were higher than those before treatment, and p38MAPK, MEK-3/6, NF-kB, TAK1, CXCL12, YKL40, IL1β, TNF , PGE2, MDA, GRP78 and CHOP levels in joint fluid of experimental group were significantly lower than those of control group whereas GPx level was higher than that of control group. Conclusion: Ozone combined with sodium hyaluronate intracavitary injection can inhibit the local inflammatory response and oxidative stress response in patients with knee osteoarthritis.展开更多
Nitric oxide (NO) deep oxidation to dinitrogen pentoxide (N2O5) by ozone together with wet scrub-bing has become a promising technology for nitrogen-oxide (NOx) removal in industrial boilers. Catalysts wer...Nitric oxide (NO) deep oxidation to dinitrogen pentoxide (N2O5) by ozone together with wet scrub-bing has become a promising technology for nitrogen-oxide (NOx) removal in industrial boilers. Catalysts were introduced to enhance the N2O5 formation rate with less ozone injection and leakage. A series of monometallic catalysts (manganese, cobalt, cerium, iron, copper, and chromium) as pre-pared by the sol-gel method were tested. The manganese oxides achieved an almost 80% conver-sion efficiency at an ozone (O3)/NO molar ratio of 2.0 in 0.12 s. The crystalline structure and porous parameters were determined. The thermodynamic reaction threshold of NO conversion to N2O5 is oxidation with an O3/NO molar ratio of 1.5. Spherical alumina was selected as the support to achieve the threshold, which was believed to improve the catalytic activity by increasing the surface area and the gas-solid contact time. Based on the manganese oxides, cerium, iron, chromium, cop-per, and cobalt were introduced as promoters. Cerium and iron improved the deep-oxidation effi-ciency compared with manganese/spherical alumina, with less than 50 mg/m3 of outlet NO + nitro-gen oxide, and less than 25 mg/m3 of residual ozone at an O3/NO molar ratio of 1.5. The other three metal oxides inhibited catalytic activity. X-ray diffraction, nitrogen adsorption, hydrogen tempera-ture-programmed reduction, and X-ray photoelectron spectroscopy results indicate that the cata-lytic activity is affected by the synergistic action of NOx oxidation and ozone decomposition.展开更多
This study reports an investigation into the degradation of 2,4-dichlorophenoxyacetic acid in bubble contactor column by O2/H2O2 process, which is widely used as a principal advanced oxidation process. The degradation...This study reports an investigation into the degradation of 2,4-dichlorophenoxyacetic acid in bubble contactor column by O2/H2O2 process, which is widely used as a principal advanced oxidation process. The degradation of 2,4-dichlorophenoxyacetic acid was studied under different H202/O3 molar ratio and pH value. Meanwhile, TOC removal was investigated both in distilled water and tap water. The influences of ozone transfer and consumed hydrogen peroxide were also discussed. The degradation products and oxidation intermediates were identified by GC-MS and LC-MS. A possible reaction mechanism was thus proposed.展开更多
To reduce energy costs,minimize secondary pollution from undecomposed ozone,and improve the efficiency of ozone use,a novel process of cycled storage‐ozone catalytic oxidation(OZCO)was employed to remove formaldehyde...To reduce energy costs,minimize secondary pollution from undecomposed ozone,and improve the efficiency of ozone use,a novel process of cycled storage‐ozone catalytic oxidation(OZCO)was employed to remove formaldehyde(HCHO)at low concentrations in air.We applied Al2O3‐supported manganese oxide(MnOx)catalysts to this process,and examined the HCHO adsorption capacity and OZCO performance over the MnOx catalysts.Owing to the high dispersion of MnOx and low oxidation state of manganese,the MnOx/Al2O3catalysts with a manganese acetate precursor and10%‐Mn loading showed good performance in both storage and OZCO stages.The presence of H2O led to a decrease of the HCHO adsorption capacity owing to competitive adsorption between moisture and HCHO at the storage stage;however,high relative humidity(RH)favored complete conversion of stored HCHO to CO2at the OZCO stage and contributed to an excellent carbonbalance.Four low concentration HCHO storage‐OZCO cycles with a long HCHO storage period and relatively short OZCO period were successfully performed over the selected MnOx/Al2O3catalyst at room temperature and a RH of50%,demonstrating that the proposed storage‐OZCO process is an economical,reliable,and promising technique for indoor air purification.展开更多
In this study, a hybrid process using non‐thermal plasma (NTP) and photocatalytic oxidation (PCO) was adopted for the degradation of gas‐phase toluene using TiO2 as the photocatalyst. To discover the synergetic effe...In this study, a hybrid process using non‐thermal plasma (NTP) and photocatalytic oxidation (PCO) was adopted for the degradation of gas‐phase toluene using TiO2 as the photocatalyst. To discover the synergetic effect between NTP and PCO, the performances of both sole (O3, UV, NTP, and PCO) and combined (O3 + TiO2, O3 + UV, NTP + UV, O3 + PCO, and NTP + PCO) processes were investigated from different perspectives, such as the toluene removal efficiency, selectivity of COx, mineralization rate, ozone utilization, and the generation of by‐products. The toluene removal efficiency of the combined NTP + PCO process was 80.2%, which was much higher than that of a sole degradation process such as NTP (18.8%) and PCO (13.4%). The selectivity of CO2 and the ozone utilization efficiency also significantly improved. The amount of by‐products in the gas phase and the carbon‐ based intermediates adsorbed on the catalyst surface dramatically reduced. The improvement in the overall performances of the combined NTP + PCO process was mainly ascribed to the efficient utilization of ozone in the photocatalytic oxidation, and the ozone further acting as an electron acceptor and scavenger, generating more hydroxyl radicals and reducing the recombination of electron‐ hole pairs.展开更多
In order to precipitate cobalt(Ⅱ) in cobalt chloride solution, a novel method using ozone as the precipitant for its strong oxidability was proposed. The results show that the precipitation reaction is diffusion-cont...In order to precipitate cobalt(Ⅱ) in cobalt chloride solution, a novel method using ozone as the precipitant for its strong oxidability was proposed. The results show that the precipitation reaction is diffusion-controlled. The main factors affecting the oxidation rate such as the stirring speed, solution temperature, ozone partial pressure, initial concentration and flow rate were investigated. The kinetics equation of each condition was established. The results indicate that the oxidation rate is independent of the initial concentration or solution temperature. The oxidation rate increases obviously with increasing the stirring speed. The linear relationship between ozone partial pressure or flow rate and oxidation rate is found.展开更多
Aluminum-oxide films deposited as gate dielectrics on germanium (Ge) by atomic layer deposition were post oxidized in an ozone atmosphere. No additional interfacial layer was electron microscopy and X-ray photoelect...Aluminum-oxide films deposited as gate dielectrics on germanium (Ge) by atomic layer deposition were post oxidized in an ozone atmosphere. No additional interfacial layer was electron microscopy and X-ray photoelectron spectroscopy detected by the high-resolution cross-sectional transmission measurements made after the ozone post oxidation (OPO) treatment. Decreases in the equivalent oxide thickness of the OPO-treated Al2O3/Ge MOS capacitors were confirmed. Furthermore, a continuous decrease in the gate leakage current was achieved with increasing OPO treatment time. The results can be attributed to the film quality having been improved by the OPO treatment.展开更多
This paper presents an engineering system approach using a 2D model of conservation of mass to study the dynamics of ozone and concerned chemical species in the stratosphere.By considering all fourteen photolysis,ozon...This paper presents an engineering system approach using a 2D model of conservation of mass to study the dynamics of ozone and concerned chemical species in the stratosphere.By considering all fourteen photolysis,ozone-generating,and-depleting chemical reactions,the model calculated the transient,spatial changes of ozone under different physical-chemical-radiative conditions.Validation against the measured data demonstrated good accuracy,close match of our model with the observed ozone concentrations at both 20°S and 90°N locations.The deviation in the average concentration was less than 1% and in ozone profiles less than 17%.The impacts of various chlorine-(Cl),nitrogen oxides-(NO_(x)),and bromine-(Br)depleting cycles on ozone concentrations and distribution were investigated.The chlorine catalytic depleting cycle was found to exhibit the most significant impact on ozone dynamics,confirming the key role of chlorine in the problem of ozone depletion.Sensitivity analysis was conducted with levels of 25%,50%,100%,200%,and 400% of the baseline value.The combined cycles(Cl+NO_(x)+Br)showed the most significant influence on ozone behavior.The total ozone abundance above the South Pole could decrease by a small 3%,from 281 DU(Dubson Units)to 273 DU for the 25% level,or by a huge thinning of 60%to 114 DU for the 400% concentration level.When the level of chlorine gases increased beyond 200%,it would cause ozone depletion to a level of ozone hole(below 220 DU).The 2D Ozone Model presented in this paper demonstrates robustness,convenience,efficiency,and executability for analyzing complex ozone phenomena in the stratosphere.展开更多
A simple model is described to simulate kinetic processes in dielectric barrier dis-charges for O2/NOx mixtures. A threshold of ozone production found experimentally is confirmedby the calculations of this modeling, a...A simple model is described to simulate kinetic processes in dielectric barrier dis-charges for O2/NOx mixtures. A threshold of ozone production found experimentally is confirmedby the calculations of this modeling, and the underiying chemical reaction mechanisms are dis-cussed. It is also found that the effects of diffusion processes in the period of the lifetime of Oatoms are not important to microdischarge channels with a large radius, i.e. larger than l50 μm.展开更多
We investigate the effect of ozone(O_(3))oxidation of silicon carbide(SiC)on the flat-band voltage(Vfb)stability of SiC metal–oxide–semiconductor(MOS)capacitors.The SiC MOS capacitors are produced by O_(3)oxidation,...We investigate the effect of ozone(O_(3))oxidation of silicon carbide(SiC)on the flat-band voltage(Vfb)stability of SiC metal–oxide–semiconductor(MOS)capacitors.The SiC MOS capacitors are produced by O_(3)oxidation,and their Vfbstability under frequency variation,temperature variation,and bias temperature stress are evaluated.Secondary ion mass spectroscopy(SIMS),atomic force microscopy(AFM),and x-ray photoelectron spectroscopy(XPS)indicate that O_(3)oxidation can adjust the element distribution near SiC/SiO_(2)interface,improve SiC/SiO_(2)interface morphology,and inhibit the formation of near-interface defects,respectively.In addition,we elaborate the underlying mechanism through which O_(3)oxidation improves the Vfbstability of SiC MOS capacitors by using the measurement results and O_(3)oxidation kinetics.展开更多
An investigation on the process of ozone combined with hydrogen peroxide and ultraviolet radiation has been carried out in order to establish the kinetics for photochemical oxidation of polyacrylamide (PAM) in aqueo...An investigation on the process of ozone combined with hydrogen peroxide and ultraviolet radiation has been carried out in order to establish the kinetics for photochemical oxidation of polyacrylamide (PAM) in aqueous solution. Effects of operating parameters, including initial PAM concentration, dosages of ozone and hydrogen peroxide, UV radiation and pH value on the photochemical oxidation of PAM, have been studied. There was an increase in photochemical oxidation rate of PAM with increasing of dosages of 03, H2O2 and ultraviolet radiation. Upon increasing of the initial PAM concentration, the photochemical oxidation rate of PAM decreased. Slight effect of pH value on the photochemical oxidation rate of PAM was observed in the experiments. The kinetics equation for the photochemical oxidation of PAM by the system has been established.展开更多
By analyzing O3 concentration,NOx concentration and intensity of illumination in Shihezi City in summer of 2015-2018,the relationship between O3 concentration and NOx concentration in summer was obtained.The results s...By analyzing O3 concentration,NOx concentration and intensity of illumination in Shihezi City in summer of 2015-2018,the relationship between O3 concentration and NOx concentration in summer was obtained.The results showed that O3 concentration rise was 14 h later than NO2 concentration rise when O3 concentration exceeded the standard in Shihezi in summer.Meanwhile,NO2 concentration had certain effect on O3 formation.展开更多
Ge has been an alternative channel material for the performance enhancement of complementary metal-oxide-semiconductor(CMOS)technology applications because of its high carrier mobility and superior compatibility with ...Ge has been an alternative channel material for the performance enhancement of complementary metal-oxide-semiconductor(CMOS)technology applications because of its high carrier mobility and superior compatibility with Si CMOS technology.The gate structure plays a key role on the electrical property.In this paper,the property of Ge MOSFET with Al_(2)O_(3)/GeO_(x)/Ge stack by ozone oxidation is reviewed.The GeO_(x)passivation mechanism by ozone oxidation and band align-ment of Al2O3/GeO_(x)/Ge stack is described.In addition,the charge distribution in the gate stack and remote Coulomb scatter-ing on carrier mobility is also presented.The surface passivation is mainly attributed to the high oxidation state of Ge.The en-ergy band alignment is well explained by the gap state theory.The charge distribution is quantitatively characterized and it is found that the gate charges make a great degradation on carrier mobility.These investigations help to provide an impressive un-derstanding and a possible instructive method to improve the performance of Ge devices.展开更多
Stratospheric ozone is normally measured using stationary equipments, such as a Dobson spectrometer and filter ozonometer, which have the disadvantages of large size, high price and high cost for operation and mainten...Stratospheric ozone is normally measured using stationary equipments, such as a Dobson spectrometer and filter ozonometer, which have the disadvantages of large size, high price and high cost for operation and maintenance. In this work, a balloon-borne photostimulated ozone sensor based on indium oxide nanoparticles has been developed to measure stratospheric ozone. Using the remote compact energy-saving room-temperature ozone sensor, a vertical distribution of ozone concentration with a high resolution was obtained, and the ozone concentration at ~ 27 km over sea level between Lake Constance, Germany and Lake Zurich, Switzerland was determined to be ~ 5.6 ppm.展开更多
Ozone therapy has been marred by conventional science for years due to many flawed experimental designs or small sample sizes of the population in which it intends to study. For this reason, many physicians have dismi...Ozone therapy has been marred by conventional science for years due to many flawed experimental designs or small sample sizes of the population in which it intends to study. For this reason, many physicians have dismissed ozone therapy and limited funds have been delegated to furthering the knowledge of its therapeutic effects. However, there is evidence that suggests that ozone does have various therapeutic effects that range from disinfection of pathogens, anticancer properties, and treatment of back ailments. In this paper, we have collected the more promising studies that suggest the efficacy and safety of ozone therapy primarily focusing on autohemotherapy. This paper is designed to promote awareness of ozone therapy and to show some supporting evidence of its efficacy. Clinically, ozone therapy is often used adjunctively and combined with other treatment modalities to enhance or encourage a desired mechanism of action. Since the efficacy of ozone alone is still contentious, it is important to note that ozone therapy should be used in conjunction with other various treatments with very few exceptions.展开更多
A method for oxidative degradation of 1,4-dioxane (1,4-D) in waste water using a combination of ozone oxidation with UV irradiation (ozone/UV) treatment was investigated. The results showed that 1,4-D was degraded...A method for oxidative degradation of 1,4-dioxane (1,4-D) in waste water using a combination of ozone oxidation with UV irradiation (ozone/UV) treatment was investigated. The results showed that 1,4-D was degraded by ozone/UV treatment up to 90 min. The optimum concentration for the injected ozone gas was about 40 g·m^3 under a constant level of UV irradiation. Furthermore, solid phase extraction and GC-MS analysis showed no specific or reproducible peaks due to by-products of 1,4-D. It was therefore concluded that 1,4-D was completely degraded by ozone/UV treatment. In contrast, the amount of 1,4-D remaining decreased slowly in the presence of HCOf or CI. It was suggested that the degradation of 1,4-D, which results from .OH oxidation, was retarded by the presence of HCO3 or CI, which act as radical scavengers.展开更多
In this paper it is presented the results of advanced oxidation of leachates from a technified sanitary landfill located in the State of Querétaro, Mexico. One characteristic of already stabilized leachates from ...In this paper it is presented the results of advanced oxidation of leachates from a technified sanitary landfill located in the State of Querétaro, Mexico. One characteristic of already stabilized leachates from sanitary landfills like this case, is their difficult degradation, mainly because the organic matter contained is recalcitrant. For the samples collect, four sites were selected, where three points per site were sampled, measuring at each site the parameters: temperature, pH, conductivity, redox potential (ORP) and dissolved oxygen (DO) and leachate samples were collected. On the other hand, the Chemical Oxygen Demand (COD) of crude leachates, leachates acidified and leachates oxidized by Fenton reagent and Ozone-UV combined were analyzed. COD was used to monitor the degradation kinetics. With the results, the ArcGIS software was applied to study the distribution of temperature, dissolved oxygen and COD mainly in the leachate lagoon. For the application of Fenton reagent in the crude leachate oxidation, the pH was first adjusted and Fe<sup>2+</sup>/H<sub>2</sub>O<sub>2</sub> ratio was optimized. The efficiency of Ozone-UV treatments was studied through COD degradation kinetics. The graphs of in (Ci/Co) vs time, showed that the kinetic processes are of order one, with very acceptable regression coefficients (R<sup>2</sup>) and extraordinarily similar speed constants (K). With Fenton oxidation, the highest percentage of COD degradation was achieved and with Ozone-UV oxidation, it was possible to practically degrade all the COD.展开更多
基金supported by the National Natural Science Foundation of China[grant numbers 42277095 and 42021004].
文摘Surface ozone(O_(3))poses significant threats to public health,agricultural crops,and plants in natural ecosystems.Global warming is likely to increase future O_(3)mainly by altering atmospheric photochemical reactions and enhancing biogenic volatile organic compound(BVOC)emissions.To assess the impacts of the future 1.5 K climate target on O_(3)concentrations and ecological O_(3)exposure in China,numerical simulations were conducted using the CMAQ(Community Multiscale Air Quality)model during April-October 2018.Ecological O_(3)exposure was estimated using six indices(i.e.,M7,M24,N100,SUM60,W126,and AOT40f).The results show that the temperature rise increases the MDA8 O_(3)(maximum daily eight-hour average O_(3))concentrations by∼3 ppb and the number of O_(3)exceedance days by 10-20 days in the North China Plain(NCP),Yangtze River Delta(YRD),and Sichuan Basin(SCB)regions.All O_(3)exposure indices show substantial increases.M24 and M7 in eastern and southern China will rise by 1-3 ppb and 2-4 ppb,respectively.N100 increases by more than 120 h in the surrounding regions of Beijing.SUM60 increases by greater than 9 ppm h^(−1),W126 increases by greater than 15 ppm h^(−1)in Shaanxi and SCB,and AOT40f increases by 6 ppm h^(−1)in NCP and SCB.The temperature increase also promotes atmospheric oxidation capacity(AOC)levels,with the higher AOC contributed by OH radicals in southern China but by NO_(3)radicals in northern China.The change in the reaction rate caused by the temperature increase has a greater influence on O_(3)exposure and AOC than the change in BVOC emissions.
文摘To estimate the impact of copying on the indoor air quality, and to investigate whether ozone emitted during such a process induces pathological oxidative stress and potential oxidative damage in the bodies of operators. Methods 67 copying operators (CO) and 67 healthy volunteers (HV) were enrolled in a random control study, in which levels of lipoperoxide (LPO) in plasma and erythrocytes, and levels of vitamin C (VC), vitamin E (VE) and b-carotene (b-CAR) in plasma as well as activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in erythrocytes were determined by spectrophotometric methods. Results Compared with the HV group, the average values of LPO in plasma and erythrocytes in the CO group were significantly increased (P<0.0001), while those of VC, VE and b-CAR in plasma as well as those of SOD, CAT and GPX in erythrocytes in the CO group were significantly decreased (P<0.0001). Pearson product-moment correlation analysis showed that with increase of ozone level in copying sites and duration of exposure to ozone, the values of LPO in plasma and erythrocytes in the bodies of operators were gradually increased,while those of VC, VE, b-CAR, SOD, CAT and GPX were decreased in the same manner. Odds ratio (OR) of risk of biochemical parameters reflecting potential oxidative damage of the copying operators ranged from 4.440 to 13.516, and 95 % CI of OR was from 2.113 to 34.061. Reliability coefficient () of the biochemical parameters used to reflect the potential oxidative damage of the operators was 0.8156, standardized item =0.9929, P<0.0001. Conclusion Findings in the present study suggest that there exist a series of free radical chain reactions and pathological oxidative stress induced by high dose ozone in the operators, thereby causing potential oxidative and lipoperoxidative damages in their bodies.
文摘Chronic exposure to low doses of ozone similar to a day of high pollution in Mexico City causes a state of oxidative stress. This produces a progressive neurodegeneration in hippocampus of rats exposed to the gas. The aim of this study was to analyze the effect of chronic exposure on the changes in the blood-brain barrier in rats exposed to low doses of ozone. Method: each group received one of the following treatments, control group received air without ozone, and groups 2, 3, 4, 5, and 6 received ozone doses of 0.25 ppm for 4 h daily during 7, 15, 30, 60 and 90 days respectively. Each group was processed to inmunohistochemical technique against of the following antibody: blood-brain barrier, guanylyl cyclase, Iba-1, GFAP, NFκ-B, TNF-α. The results show that there is a correlation between the time exposure of ozone and the progressive damage, on the blood-brain barrier rupture, finally causing edema of endothelial cell, increase in guanylyl cyclase type 1, thickening of the processes and astrocytes foot, and an increase in the expression of factors NFκ-B and TNF-α at 30 and 60 days of exposure to this gas. All the above indicates that the chronic state of oxidative stress causes a neurodegeneration process, accompanied by disruption of the blood-brain barrier likely to occur in the Alzheimer’s disease.
文摘Objective: To study the effects of ozone combined with sodium hyaluronate intracavitary injection on inflammatory mediators and oxidative stress in knee osteoarthritis. Methods:Patients who were diagnosed with moderate to severe knee osteoarthritis in Tangshan Hongci Hospital between July 2014 and March 2017 were selected and randomly divided into two groups, experimental group accepted ozone combined with sodium hyaluronate intracavitary injection, and control group accepted intracavitary injection of sodium hyaluronate. The joint fluid samples were collected before and after treatment respectively to determine the contents of inflammatory and oxidative stress signal molecules, inflammatory mediators and oxidative stress molecules. Results: After treatment, p38MAPK, MEK-3/6, NF-kB, TAK1, CXCL12, YKL40, IL1β, TNF , PGE2, MDA, GRP78 and CHOP levels in joint fluid of both groups of patients were significantly lower than those before treatment whereas GPx levels were higher than those before treatment, and p38MAPK, MEK-3/6, NF-kB, TAK1, CXCL12, YKL40, IL1β, TNF , PGE2, MDA, GRP78 and CHOP levels in joint fluid of experimental group were significantly lower than those of control group whereas GPx level was higher than that of control group. Conclusion: Ozone combined with sodium hyaluronate intracavitary injection can inhibit the local inflammatory response and oxidative stress response in patients with knee osteoarthritis.
基金supported by the National Natural Science Foundation of China(51422605)the Provincial Natural Science Foundation of Zhejiang,China(LR16E060001)~~
文摘Nitric oxide (NO) deep oxidation to dinitrogen pentoxide (N2O5) by ozone together with wet scrub-bing has become a promising technology for nitrogen-oxide (NOx) removal in industrial boilers. Catalysts were introduced to enhance the N2O5 formation rate with less ozone injection and leakage. A series of monometallic catalysts (manganese, cobalt, cerium, iron, copper, and chromium) as pre-pared by the sol-gel method were tested. The manganese oxides achieved an almost 80% conver-sion efficiency at an ozone (O3)/NO molar ratio of 2.0 in 0.12 s. The crystalline structure and porous parameters were determined. The thermodynamic reaction threshold of NO conversion to N2O5 is oxidation with an O3/NO molar ratio of 1.5. Spherical alumina was selected as the support to achieve the threshold, which was believed to improve the catalytic activity by increasing the surface area and the gas-solid contact time. Based on the manganese oxides, cerium, iron, chromium, cop-per, and cobalt were introduced as promoters. Cerium and iron improved the deep-oxidation effi-ciency compared with manganese/spherical alumina, with less than 50 mg/m3 of outlet NO + nitro-gen oxide, and less than 25 mg/m3 of residual ozone at an O3/NO molar ratio of 1.5. The other three metal oxides inhibited catalytic activity. X-ray diffraction, nitrogen adsorption, hydrogen tempera-ture-programmed reduction, and X-ray photoelectron spectroscopy results indicate that the cata-lytic activity is affected by the synergistic action of NOx oxidation and ozone decomposition.
基金The National Natural Science Foundation of China (No. 50378028)
文摘This study reports an investigation into the degradation of 2,4-dichlorophenoxyacetic acid in bubble contactor column by O2/H2O2 process, which is widely used as a principal advanced oxidation process. The degradation of 2,4-dichlorophenoxyacetic acid was studied under different H202/O3 molar ratio and pH value. Meanwhile, TOC removal was investigated both in distilled water and tap water. The influences of ozone transfer and consumed hydrogen peroxide were also discussed. The degradation products and oxidation intermediates were identified by GC-MS and LC-MS. A possible reaction mechanism was thus proposed.
基金supported by the National Natural Science Foundation of China(21673030)the Higher Education Development Fund(for Collaborative Innovation Center) of Liaoning Province,China(20110217004)~~
文摘To reduce energy costs,minimize secondary pollution from undecomposed ozone,and improve the efficiency of ozone use,a novel process of cycled storage‐ozone catalytic oxidation(OZCO)was employed to remove formaldehyde(HCHO)at low concentrations in air.We applied Al2O3‐supported manganese oxide(MnOx)catalysts to this process,and examined the HCHO adsorption capacity and OZCO performance over the MnOx catalysts.Owing to the high dispersion of MnOx and low oxidation state of manganese,the MnOx/Al2O3catalysts with a manganese acetate precursor and10%‐Mn loading showed good performance in both storage and OZCO stages.The presence of H2O led to a decrease of the HCHO adsorption capacity owing to competitive adsorption between moisture and HCHO at the storage stage;however,high relative humidity(RH)favored complete conversion of stored HCHO to CO2at the OZCO stage and contributed to an excellent carbonbalance.Four low concentration HCHO storage‐OZCO cycles with a long HCHO storage period and relatively short OZCO period were successfully performed over the selected MnOx/Al2O3catalyst at room temperature and a RH of50%,demonstrating that the proposed storage‐OZCO process is an economical,reliable,and promising technique for indoor air purification.
基金supported by the National Key Research and Development Plan of China (2016YFC0204700)National Natural Science Foundation of China (NSFC-51578488)+3 种基金Zhejiang Provincial "151" Talents Program (2013)Key Project of Zhejiang Provincial Science and Technology Programthe Program for Zhejiang Leading Team of S&T Innovation (2013TD07)the Changjiang Scholar Incentive Program (2009)~~
文摘In this study, a hybrid process using non‐thermal plasma (NTP) and photocatalytic oxidation (PCO) was adopted for the degradation of gas‐phase toluene using TiO2 as the photocatalyst. To discover the synergetic effect between NTP and PCO, the performances of both sole (O3, UV, NTP, and PCO) and combined (O3 + TiO2, O3 + UV, NTP + UV, O3 + PCO, and NTP + PCO) processes were investigated from different perspectives, such as the toluene removal efficiency, selectivity of COx, mineralization rate, ozone utilization, and the generation of by‐products. The toluene removal efficiency of the combined NTP + PCO process was 80.2%, which was much higher than that of a sole degradation process such as NTP (18.8%) and PCO (13.4%). The selectivity of CO2 and the ozone utilization efficiency also significantly improved. The amount of by‐products in the gas phase and the carbon‐ based intermediates adsorbed on the catalyst surface dramatically reduced. The improvement in the overall performances of the combined NTP + PCO process was mainly ascribed to the efficient utilization of ozone in the photocatalytic oxidation, and the ozone further acting as an electron acceptor and scavenger, generating more hydroxyl radicals and reducing the recombination of electron‐ hole pairs.
基金Projects(2008GK3031, 2009GK2010) supported by Science and Technology Planning Project of Hunan Province, China
文摘In order to precipitate cobalt(Ⅱ) in cobalt chloride solution, a novel method using ozone as the precipitant for its strong oxidability was proposed. The results show that the precipitation reaction is diffusion-controlled. The main factors affecting the oxidation rate such as the stirring speed, solution temperature, ozone partial pressure, initial concentration and flow rate were investigated. The kinetics equation of each condition was established. The results indicate that the oxidation rate is independent of the initial concentration or solution temperature. The oxidation rate increases obviously with increasing the stirring speed. The linear relationship between ozone partial pressure or flow rate and oxidation rate is found.
基金supported by the National Program for Key Basic Research Projects (973 Program) of China (Grant No. 2011CBA00607)the National Natural Science Foundation of China (Grant Nos. 61106089 and 51102048)+2 种基金the National Science and Technology Major Projects (Grant No. 2009ZX02035)the State Key Laboratory of ASIC and System Project (Grant No. 11MS017)the Open Funds of State Key Laboratory of ASIC and System at Fudan University (Grant No. 10KF001)
文摘Aluminum-oxide films deposited as gate dielectrics on germanium (Ge) by atomic layer deposition were post oxidized in an ozone atmosphere. No additional interfacial layer was electron microscopy and X-ray photoelectron spectroscopy detected by the high-resolution cross-sectional transmission measurements made after the ozone post oxidation (OPO) treatment. Decreases in the equivalent oxide thickness of the OPO-treated Al2O3/Ge MOS capacitors were confirmed. Furthermore, a continuous decrease in the gate leakage current was achieved with increasing OPO treatment time. The results can be attributed to the film quality having been improved by the OPO treatment.
文摘This paper presents an engineering system approach using a 2D model of conservation of mass to study the dynamics of ozone and concerned chemical species in the stratosphere.By considering all fourteen photolysis,ozone-generating,and-depleting chemical reactions,the model calculated the transient,spatial changes of ozone under different physical-chemical-radiative conditions.Validation against the measured data demonstrated good accuracy,close match of our model with the observed ozone concentrations at both 20°S and 90°N locations.The deviation in the average concentration was less than 1% and in ozone profiles less than 17%.The impacts of various chlorine-(Cl),nitrogen oxides-(NO_(x)),and bromine-(Br)depleting cycles on ozone concentrations and distribution were investigated.The chlorine catalytic depleting cycle was found to exhibit the most significant impact on ozone dynamics,confirming the key role of chlorine in the problem of ozone depletion.Sensitivity analysis was conducted with levels of 25%,50%,100%,200%,and 400% of the baseline value.The combined cycles(Cl+NO_(x)+Br)showed the most significant influence on ozone behavior.The total ozone abundance above the South Pole could decrease by a small 3%,from 281 DU(Dubson Units)to 273 DU for the 25% level,or by a huge thinning of 60%to 114 DU for the 400% concentration level.When the level of chlorine gases increased beyond 200%,it would cause ozone depletion to a level of ozone hole(below 220 DU).The 2D Ozone Model presented in this paper demonstrates robustness,convenience,efficiency,and executability for analyzing complex ozone phenomena in the stratosphere.
文摘A simple model is described to simulate kinetic processes in dielectric barrier dis-charges for O2/NOx mixtures. A threshold of ozone production found experimentally is confirmedby the calculations of this modeling, and the underiying chemical reaction mechanisms are dis-cussed. It is also found that the effects of diffusion processes in the period of the lifetime of Oatoms are not important to microdischarge channels with a large radius, i.e. larger than l50 μm.
基金Project supported by the National Natural Science Foundation of China(Grant No.61874017)。
文摘We investigate the effect of ozone(O_(3))oxidation of silicon carbide(SiC)on the flat-band voltage(Vfb)stability of SiC metal–oxide–semiconductor(MOS)capacitors.The SiC MOS capacitors are produced by O_(3)oxidation,and their Vfbstability under frequency variation,temperature variation,and bias temperature stress are evaluated.Secondary ion mass spectroscopy(SIMS),atomic force microscopy(AFM),and x-ray photoelectron spectroscopy(XPS)indicate that O_(3)oxidation can adjust the element distribution near SiC/SiO_(2)interface,improve SiC/SiO_(2)interface morphology,and inhibit the formation of near-interface defects,respectively.In addition,we elaborate the underlying mechanism through which O_(3)oxidation improves the Vfbstability of SiC MOS capacitors by using the measurement results and O_(3)oxidation kinetics.
文摘An investigation on the process of ozone combined with hydrogen peroxide and ultraviolet radiation has been carried out in order to establish the kinetics for photochemical oxidation of polyacrylamide (PAM) in aqueous solution. Effects of operating parameters, including initial PAM concentration, dosages of ozone and hydrogen peroxide, UV radiation and pH value on the photochemical oxidation of PAM, have been studied. There was an increase in photochemical oxidation rate of PAM with increasing of dosages of 03, H2O2 and ultraviolet radiation. Upon increasing of the initial PAM concentration, the photochemical oxidation rate of PAM decreased. Slight effect of pH value on the photochemical oxidation rate of PAM was observed in the experiments. The kinetics equation for the photochemical oxidation of PAM by the system has been established.
基金Supported by Shihezi Science and Technology Plan Project of Agriculture Division 8(2018JZ08)
文摘By analyzing O3 concentration,NOx concentration and intensity of illumination in Shihezi City in summer of 2015-2018,the relationship between O3 concentration and NOx concentration in summer was obtained.The results showed that O3 concentration rise was 14 h later than NO2 concentration rise when O3 concentration exceeded the standard in Shihezi in summer.Meanwhile,NO2 concentration had certain effect on O3 formation.
基金supported by the Natural Science Foundation of Beijing Municipality(No.4214079)。
文摘Ge has been an alternative channel material for the performance enhancement of complementary metal-oxide-semiconductor(CMOS)technology applications because of its high carrier mobility and superior compatibility with Si CMOS technology.The gate structure plays a key role on the electrical property.In this paper,the property of Ge MOSFET with Al_(2)O_(3)/GeO_(x)/Ge stack by ozone oxidation is reviewed.The GeO_(x)passivation mechanism by ozone oxidation and band align-ment of Al2O3/GeO_(x)/Ge stack is described.In addition,the charge distribution in the gate stack and remote Coulomb scatter-ing on carrier mobility is also presented.The surface passivation is mainly attributed to the high oxidation state of Ge.The en-ergy band alignment is well explained by the gap state theory.The charge distribution is quantitatively characterized and it is found that the gate charges make a great degradation on carrier mobility.These investigations help to provide an impressive un-derstanding and a possible instructive method to improve the performance of Ge devices.
文摘Stratospheric ozone is normally measured using stationary equipments, such as a Dobson spectrometer and filter ozonometer, which have the disadvantages of large size, high price and high cost for operation and maintenance. In this work, a balloon-borne photostimulated ozone sensor based on indium oxide nanoparticles has been developed to measure stratospheric ozone. Using the remote compact energy-saving room-temperature ozone sensor, a vertical distribution of ozone concentration with a high resolution was obtained, and the ozone concentration at ~ 27 km over sea level between Lake Constance, Germany and Lake Zurich, Switzerland was determined to be ~ 5.6 ppm.
文摘Ozone therapy has been marred by conventional science for years due to many flawed experimental designs or small sample sizes of the population in which it intends to study. For this reason, many physicians have dismissed ozone therapy and limited funds have been delegated to furthering the knowledge of its therapeutic effects. However, there is evidence that suggests that ozone does have various therapeutic effects that range from disinfection of pathogens, anticancer properties, and treatment of back ailments. In this paper, we have collected the more promising studies that suggest the efficacy and safety of ozone therapy primarily focusing on autohemotherapy. This paper is designed to promote awareness of ozone therapy and to show some supporting evidence of its efficacy. Clinically, ozone therapy is often used adjunctively and combined with other treatment modalities to enhance or encourage a desired mechanism of action. Since the efficacy of ozone alone is still contentious, it is important to note that ozone therapy should be used in conjunction with other various treatments with very few exceptions.
文摘A method for oxidative degradation of 1,4-dioxane (1,4-D) in waste water using a combination of ozone oxidation with UV irradiation (ozone/UV) treatment was investigated. The results showed that 1,4-D was degraded by ozone/UV treatment up to 90 min. The optimum concentration for the injected ozone gas was about 40 g·m^3 under a constant level of UV irradiation. Furthermore, solid phase extraction and GC-MS analysis showed no specific or reproducible peaks due to by-products of 1,4-D. It was therefore concluded that 1,4-D was completely degraded by ozone/UV treatment. In contrast, the amount of 1,4-D remaining decreased slowly in the presence of HCOf or CI. It was suggested that the degradation of 1,4-D, which results from .OH oxidation, was retarded by the presence of HCO3 or CI, which act as radical scavengers.
文摘In this paper it is presented the results of advanced oxidation of leachates from a technified sanitary landfill located in the State of Querétaro, Mexico. One characteristic of already stabilized leachates from sanitary landfills like this case, is their difficult degradation, mainly because the organic matter contained is recalcitrant. For the samples collect, four sites were selected, where three points per site were sampled, measuring at each site the parameters: temperature, pH, conductivity, redox potential (ORP) and dissolved oxygen (DO) and leachate samples were collected. On the other hand, the Chemical Oxygen Demand (COD) of crude leachates, leachates acidified and leachates oxidized by Fenton reagent and Ozone-UV combined were analyzed. COD was used to monitor the degradation kinetics. With the results, the ArcGIS software was applied to study the distribution of temperature, dissolved oxygen and COD mainly in the leachate lagoon. For the application of Fenton reagent in the crude leachate oxidation, the pH was first adjusted and Fe<sup>2+</sup>/H<sub>2</sub>O<sub>2</sub> ratio was optimized. The efficiency of Ozone-UV treatments was studied through COD degradation kinetics. The graphs of in (Ci/Co) vs time, showed that the kinetic processes are of order one, with very acceptable regression coefficients (R<sup>2</sup>) and extraordinarily similar speed constants (K). With Fenton oxidation, the highest percentage of COD degradation was achieved and with Ozone-UV oxidation, it was possible to practically degrade all the COD.