期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Spatiotemporal variations of ozone exposure and its risks to vegetation and human health in Cyprus:an analysis across a gradient of altitudes 被引量:1
1
作者 Stefanos Agathokleous Costas JSaitanis +3 位作者 Chrysanthos Savvides Pierre Sicard Evgenios Agathokleous Alessandra De Marco 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第3期579-594,共16页
Ground-level ozone(O_(3)) aff ects vegetation and threatens environmental health when levels exceed critical values,above which adverse eff ects are expected.Cyprus is expected to be a hotspot for O_(3)concentrations ... Ground-level ozone(O_(3)) aff ects vegetation and threatens environmental health when levels exceed critical values,above which adverse eff ects are expected.Cyprus is expected to be a hotspot for O_(3)concentrations due to its unique position in the eastern Mediterranean,receiving air masses from Europe,African,and Asian continents,and experiencing a warm Mediterranean climate.In Cyprus,the spatiotemporal features of O_(3) are poorly understood and the potential risks for forest health have not been explored.We evaluated O_(3) and nitrogen oxides(NO and NO 2)at four regional background stations at different altitudes over 2014−2016.O_(3) risks to vegetation and human health were estimated by calculating accumulated O_(3)exposure over a threshold of 40 nmol mol^(−1)(AOT40)and cumulative exposure to mixing ratios above 35 nmol mol^(−1)(SOMO35)indices.The data reveal that mean O_(3)concentrations follow a seasonal pattern,with higher levels in spring(51.8 nmol mol^(−1))and summer(53.2 nmol mol^(−1))and lower levels in autumn(46.9 nmol mol^(−1))and winter(43.3 nmol mol^(−1)).The highest mean O_(3)exposure(59.5 nmol mol^(−1)) in summer occurred at the high elevation station Mt.Troodos(1819 m a.s.l.).Increasing(decreasing)altitudinal gradients were found for O_(3)(NO x),driven by summer–winter diff erences.The diurnal patterns of O_(3) showed little variation.Only at the lowest altitude O_(3) displayed a typical O_(3) diurnal pattern,with hourly diff erences smaller than 15 nmol mol^(−1).Accumulated O_(3) exposures at all stations and in all years exceeded the European Union’s limits for the protection of vegetation,with average values of 3-month(limit:3000 nmol mol^(−1)h)and 6-month(limit:5000 nmol mol^(−1)h)AOT40 for crops and forests of 16,564 and 31,836 nmol mol^(−1)h,respectively.O_(3) exposures were considerably high for human health,with an average SOMO35 value of 7270 nmol mol^(−1) days across stations and years.The results indicate that O_(3) is a major environmental and public health issue in Cyprus,and policies must be adopted to mitigate O_(3) precursor emissions at local and regional scales. 展开更多
关键词 Air pollution ozone risk assessment Exposure metrics VEGETATION Human health
下载PDF
isoAOT40:An improved ozone exposure index based on the Annual Ozone Spectrum Profile(AO3SP)
2
作者 Evgenios Agathokleous Costas J.Saitanis +3 位作者 Stefanos Agathokleous Chrysanthos Savvides Vicent Calatayud Pierre Sicard 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第6期1949-1955,共7页
Abstarct In recognition of the rising threats of groundlevel ozone(O_(3))pollution to forests,agricultural crops,and other types of vegetation,accurate and realistic risk assessment is urgently needed.The accumulated ... Abstarct In recognition of the rising threats of groundlevel ozone(O_(3))pollution to forests,agricultural crops,and other types of vegetation,accurate and realistic risk assessment is urgently needed.The accumulated O_(3)exposure over a concentration threshold of 40 nmol mol-1(AOT40)is the most commonly used metric to investigate O3 exposure and its effects on vegetation and to conduct vegetation risk assessment.It is also used by international regulatory authorities for deriving critical levels and setting standards to protect vegetation against surface O_(3).However,fixed periods of the growing season are used universally,yet growing seasons vary with latitudes and elevations,and the periods of plant lifespan also differ among annual species.Here,we propose the concept of the Annual O_(3)Spectrum Profile(AO_(3)SP)and apply it to calculate the profile of AOT40 throughout the year(AAOT40SP,Annual AOT40 Spectrum Profile)using the International Organization for Standardization(ISO)weeks as a shorter window ISO-based accumulated exposure.Using moving time periods of three(for crops)or six(for forests)months,the i so AOT40 behavior throughout the year can be examined as a diagnostic tool for O_(3)risks in the short-or long-term during the lifecycle of local vegetation.From this analysis,AOT40(i so AOT40)that is most representative for the local conditions and specific situations can be identified,depending on the exact growing season and lifecycle of the target vegetation.We applied this novel approach to data from five background monitoring stations located at different elevations in Cyprus.Our results show that the AAOT40SP approach can be used for improved and more realistic assessment of O3 risks to vegetation.The AO_(3)SP approach can also be applied using metrics other than AOT40(exposure-or flux-based),adding a new dimension to the way O_(3)risk to vegetation is assessed. 展开更多
关键词 Air pollution AOT40 index ozone risk assessment Critical levels Vegetation exposure metric
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部