E xisting methods for synthesizing p -benzoquinone have drawbacks with respect to environmental protection, production scale, or industrial value. Therefore, it is imperative that a simple and environmentally friendly...E xisting methods for synthesizing p -benzoquinone have drawbacks with respect to environmental protection, production scale, or industrial value. Therefore, it is imperative that a simple and environmentally friendly alternative be developed. The approach that involves preparing p -benzoquinone by the catalytic oxidation of benzene with hydrogen peroxide (H 2 O 2 ) over copper-modi ed titanium silicalite-1 (Cu/TS-1) has a certain superiority due to its green synthesis and mild reaction condi- tions. In this study, Cu/TS-1 catalyst was prepared by the wet impregnation of TS-1 with an aqueous solution of Cu(NO 3 ) 2 and then characterized by X-ray di raction, Fourier transform infrared spectroscopy, di use re ectance UV Vis spectros- copy, scanning electron microscopy, inductively coupled plasma mass spectrometry, X-ray uorescence, and analysis of the N 2 adsorption desorption isotherms. The results reveal that Cu species exist mainly in the form of amorphous CuO that is well dispersed on the surface of catalysts, with no major change in the molecular sieve framework. After optimizing the reaction conditions, a desirable p -benzoquinone selectivity (88.4%) and benzene conversion (18.3%) were obtained when the doping of Cu in Cu/TS-1 is 1.95 wt%. In addition, Cu/TS-1 can be conveniently regenerated, showing a slight decrease in catalytic capability after initial use, which then stabilizes in subsequent circulations. The satisfactory stability and low cost of synthesizing Cu/TS-1 give this method considerable potential for further industrialization.展开更多
Electroanalytical techniques could be a reliable and promising alternative to classical and sophisticated methods because of their simplicity(small and portable),easy use,the ability to deliver fast response with hi...Electroanalytical techniques could be a reliable and promising alternative to classical and sophisticated methods because of their simplicity(small and portable),easy use,the ability to deliver fast response with high sensitivity and selectivity.A square wave voltammetric method was developed for the assessment of organophosphorus(OPs) compound impact on acetylcholinesterase(AChE) of Pheretima with 2,6-dimethyl-p-benzoquinone(2,6DMBQ) as a redox indicator.The substrate of acetylthiocholine is hydrolyzed by AChE and the produced thiocholine reacts with 2,6-DMBQ to give an obvious shift of electrochemical signal.The reduction peak of 2,6-DMBQ is located at around 0.18 V which is far away from the oxidation potential of possible interference components often present in biosample.The decreased rate of reduction current was related with the activity of AChE.The inhibition of parathion-methyl on AChE was assessed.The inhibiton rate of OPs on AChE activity increased quickly during the first 10 min inhibition,and after that the value of inhibition rate approached to be constant.AChE lost almost 29.3% of activity after 10 min incubation with 1 μg/mL parathion-methyl and 67.5% of activity with 10 μg/mL parathion-methyl,while the activity that corresponds to 40 μg/mL parathion-methyl was nearly completely inhibited(94.9%).Compared to cyclic voltammetry and amperometry,Square wave voltammetry(SWV) method is a high sensitive electroanalysis with fast scan-rate(only several seconds for one signal value) which is useful to prevent the electrodes from possible fouling or passivation.This method can be employed to assess the inhibition of organophosphate on AChE and investigate OPs impact on environmental animals.展开更多
基金supported by the National Natural Science Foundation of China (No. 21376163)
文摘E xisting methods for synthesizing p -benzoquinone have drawbacks with respect to environmental protection, production scale, or industrial value. Therefore, it is imperative that a simple and environmentally friendly alternative be developed. The approach that involves preparing p -benzoquinone by the catalytic oxidation of benzene with hydrogen peroxide (H 2 O 2 ) over copper-modi ed titanium silicalite-1 (Cu/TS-1) has a certain superiority due to its green synthesis and mild reaction condi- tions. In this study, Cu/TS-1 catalyst was prepared by the wet impregnation of TS-1 with an aqueous solution of Cu(NO 3 ) 2 and then characterized by X-ray di raction, Fourier transform infrared spectroscopy, di use re ectance UV Vis spectros- copy, scanning electron microscopy, inductively coupled plasma mass spectrometry, X-ray uorescence, and analysis of the N 2 adsorption desorption isotherms. The results reveal that Cu species exist mainly in the form of amorphous CuO that is well dispersed on the surface of catalysts, with no major change in the molecular sieve framework. After optimizing the reaction conditions, a desirable p -benzoquinone selectivity (88.4%) and benzene conversion (18.3%) were obtained when the doping of Cu in Cu/TS-1 is 1.95 wt%. In addition, Cu/TS-1 can be conveniently regenerated, showing a slight decrease in catalytic capability after initial use, which then stabilizes in subsequent circulations. The satisfactory stability and low cost of synthesizing Cu/TS-1 give this method considerable potential for further industrialization.
基金Supported by the Natural Science Foundation of Shanxi Province,China(No.20001057)
文摘Electroanalytical techniques could be a reliable and promising alternative to classical and sophisticated methods because of their simplicity(small and portable),easy use,the ability to deliver fast response with high sensitivity and selectivity.A square wave voltammetric method was developed for the assessment of organophosphorus(OPs) compound impact on acetylcholinesterase(AChE) of Pheretima with 2,6-dimethyl-p-benzoquinone(2,6DMBQ) as a redox indicator.The substrate of acetylthiocholine is hydrolyzed by AChE and the produced thiocholine reacts with 2,6-DMBQ to give an obvious shift of electrochemical signal.The reduction peak of 2,6-DMBQ is located at around 0.18 V which is far away from the oxidation potential of possible interference components often present in biosample.The decreased rate of reduction current was related with the activity of AChE.The inhibition of parathion-methyl on AChE was assessed.The inhibiton rate of OPs on AChE activity increased quickly during the first 10 min inhibition,and after that the value of inhibition rate approached to be constant.AChE lost almost 29.3% of activity after 10 min incubation with 1 μg/mL parathion-methyl and 67.5% of activity with 10 μg/mL parathion-methyl,while the activity that corresponds to 40 μg/mL parathion-methyl was nearly completely inhibited(94.9%).Compared to cyclic voltammetry and amperometry,Square wave voltammetry(SWV) method is a high sensitive electroanalysis with fast scan-rate(only several seconds for one signal value) which is useful to prevent the electrodes from possible fouling or passivation.This method can be employed to assess the inhibition of organophosphate on AChE and investigate OPs impact on environmental animals.