A class of higher-order four-point boundary value problems with a p-Laplacian operator is studied. By use of a fixed point theorem in cones, sufficient conditions for the existence of positive solutions for the bounda...A class of higher-order four-point boundary value problems with a p-Laplacian operator is studied. By use of a fixed point theorem in cones, sufficient conditions for the existence of positive solutions for the boundary value problems are obtained.展开更多
In this paper,the boundary value problems of p-Laplacian functional differential equation are studied.By using a fixed point theorem in cones,some criteria for the existence of positive solutions are given.
This article offers a simple but rigorous proof of Brouwer’s fixed point theorem using Sperner’s Lemma.The general method I have used so far in the proof is mainly to convert the n-dimensional shapes to the correspo...This article offers a simple but rigorous proof of Brouwer’s fixed point theorem using Sperner’s Lemma.The general method I have used so far in the proof is mainly to convert the n-dimensional shapes to the corresponding case under the Sperner’s Labeling and apply the Sperner’s Lemma to solve the question.展开更多
In this paper, we study the multiplicity of positive solutions for a class of p-Laplacian difference equations with delay. We propose sufficient conditions for the existence of at least three positive solutions and we...In this paper, we study the multiplicity of positive solutions for a class of p-Laplacian difference equations with delay. We propose sufficient conditions for the existence of at least three positive solutions and we also provide two numerical examples to illustrate the theoretical results.展开更多
In this paper the existence of solutions of a boundary value problem forimpulsively differential equations that is difficult to solve by the upper and lowersolution method will be proved by means of Schauder’s fixed ...In this paper the existence of solutions of a boundary value problem forimpulsively differential equations that is difficult to solve by the upper and lowersolution method will be proved by means of Schauder’s fixed point theorem,whichimproves some existing results.展开更多
In this paper, we prove some fixed point theorems for generalized contractions in the setting of G-metric spaces. Our results extend a result of Edelstein [M. Edelstein, On fixed and periodic points under contractive ...In this paper, we prove some fixed point theorems for generalized contractions in the setting of G-metric spaces. Our results extend a result of Edelstein [M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc., 37 (1962), 74-79] and a result of Suzuki [T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal., 71 (2009), 5313-5317]. We prove, also, a fixed point theorem in the setting of G-cone metric spaces.展开更多
Under the conditions of compatility or sub -c ompatility between a sigle-valued mapping and set-valued mapping, this paper d iscusses the existence of common fixed points for two set-valued mappings and a single-value...Under the conditions of compatility or sub -c ompatility between a sigle-valued mapping and set-valued mapping, this paper d iscusses the existence of common fixed points for two set-valued mappings and a single-valued mapping in complete, convex matric spaces. We extend and develop the main results.展开更多
This paper proposes a formally stronger set-valued Caristi’s fixed point theorem and by using a simple method we give a direct proof for the equivalence between Ekeland’s variational principle and this set-valued Ca...This paper proposes a formally stronger set-valued Caristi’s fixed point theorem and by using a simple method we give a direct proof for the equivalence between Ekeland’s variational principle and this set-valued Caristi’s fixed point theorem.The results stated in this paper improve and strengthen the corresponding results in[4].展开更多
In this work, we will discuss Caristi’s fixed point theorem for mapping results introduced in the setting of normed spaces. This work is a generalization of the classical Caristi’s fixed point theorem. Also, Caristi...In this work, we will discuss Caristi’s fixed point theorem for mapping results introduced in the setting of normed spaces. This work is a generalization of the classical Caristi’s fixed point theorem. Also, Caristi’s type of fixed points theorem was partial discussed in Reich, Mizoguchi and Takahashi’s and Amini-Harandi’s results, we developed ideas that many known fixed point theorems can easily be derived from the Caristi theorem.展开更多
For many control systems in real life, impulses and delays are intrinsic phenomena that do not modify their controllability. So we conjecture that under certain conditions the abrupt changes and delays as perturbation...For many control systems in real life, impulses and delays are intrinsic phenomena that do not modify their controllability. So we conjecture that under certain conditions the abrupt changes and delays as perturbations of a system do not destroy its controllability. There are many practical examples of impulsive control systems with delays, such as a chemical reactor system, a financial system with two state variables, the amount of money in a market and the savings rate of a central bank, and the growth of a population diffusing throughout its habitat modeled by a reaction-diffusion equation. In this paper we apply the Rothe’s Fixed Point Theorem to prove the interior approximate controllability of the following Benjamin Bona-Mohany(BBM) type equation with impulses and delay where and are constants, Ω is a domain in , ω is an open non-empty subset of Ω , denotes the characteristic function of the set ω , the distributed control , are continuous functions and the nonlinear functions are smooth enough functions satisfying some additional conditions.展开更多
基金Sponsored by the National Natural Science Foundation of China (10671012)Doctoral Program Foundation of Education Ministry of China(20050007011)
文摘A class of higher-order four-point boundary value problems with a p-Laplacian operator is studied. By use of a fixed point theorem in cones, sufficient conditions for the existence of positive solutions for the boundary value problems are obtained.
文摘In this paper,the boundary value problems of p-Laplacian functional differential equation are studied.By using a fixed point theorem in cones,some criteria for the existence of positive solutions are given.
基金by Dr Kemp from National Mathematics and Science College.
文摘This article offers a simple but rigorous proof of Brouwer’s fixed point theorem using Sperner’s Lemma.The general method I have used so far in the proof is mainly to convert the n-dimensional shapes to the corresponding case under the Sperner’s Labeling and apply the Sperner’s Lemma to solve the question.
基金The NSF (11071102) of Chinathe Research Fund (10JDG124) for High-level Group of Jiangsu Universitythe NSF (11KJD110001) for Colleges and Universities in Jiangsu Province
文摘In this paper, we study the multiplicity of positive solutions for a class of p-Laplacian difference equations with delay. We propose sufficient conditions for the existence of at least three positive solutions and we also provide two numerical examples to illustrate the theoretical results.
文摘In this paper the existence of solutions of a boundary value problem forimpulsively differential equations that is difficult to solve by the upper and lowersolution method will be proved by means of Schauder’s fixed point theorem,whichimproves some existing results.
基金supported by Università degli Studi di Palermo (Local University Project ex 60%)
文摘In this paper, we prove some fixed point theorems for generalized contractions in the setting of G-metric spaces. Our results extend a result of Edelstein [M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc., 37 (1962), 74-79] and a result of Suzuki [T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal., 71 (2009), 5313-5317]. We prove, also, a fixed point theorem in the setting of G-cone metric spaces.
文摘Under the conditions of compatility or sub -c ompatility between a sigle-valued mapping and set-valued mapping, this paper d iscusses the existence of common fixed points for two set-valued mappings and a single-valued mapping in complete, convex matric spaces. We extend and develop the main results.
文摘This paper proposes a formally stronger set-valued Caristi’s fixed point theorem and by using a simple method we give a direct proof for the equivalence between Ekeland’s variational principle and this set-valued Caristi’s fixed point theorem.The results stated in this paper improve and strengthen the corresponding results in[4].
文摘In this work, we will discuss Caristi’s fixed point theorem for mapping results introduced in the setting of normed spaces. This work is a generalization of the classical Caristi’s fixed point theorem. Also, Caristi’s type of fixed points theorem was partial discussed in Reich, Mizoguchi and Takahashi’s and Amini-Harandi’s results, we developed ideas that many known fixed point theorems can easily be derived from the Caristi theorem.
文摘For many control systems in real life, impulses and delays are intrinsic phenomena that do not modify their controllability. So we conjecture that under certain conditions the abrupt changes and delays as perturbations of a system do not destroy its controllability. There are many practical examples of impulsive control systems with delays, such as a chemical reactor system, a financial system with two state variables, the amount of money in a market and the savings rate of a central bank, and the growth of a population diffusing throughout its habitat modeled by a reaction-diffusion equation. In this paper we apply the Rothe’s Fixed Point Theorem to prove the interior approximate controllability of the following Benjamin Bona-Mohany(BBM) type equation with impulses and delay where and are constants, Ω is a domain in , ω is an open non-empty subset of Ω , denotes the characteristic function of the set ω , the distributed control , are continuous functions and the nonlinear functions are smooth enough functions satisfying some additional conditions.
基金Supported by Ministry of Education of Science and Technology of Important Projects(207047)Natural Science Foundation of Anhui Province of China(050460103)Key Natural Science Foundation by the Bureau of Education of Anhui Province in China(2005kj031ZD)