期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Congruences for the class numbers of real cyclic sextic number fields 被引量:2
1
作者 刘通 《Science China Mathematics》 SCIE 1999年第10期1009-1018,共10页
LetK 6 be a real cyclic sextic number field, andK 2,K 3 its quadratic and cubic subfield. Leth(L) denote the ideal class number of fieldL. Seven congruences forh - =h (K 6)/(h(K 2)h(K 3)) are obtained. In particular, ... LetK 6 be a real cyclic sextic number field, andK 2,K 3 its quadratic and cubic subfield. Leth(L) denote the ideal class number of fieldL. Seven congruences forh - =h (K 6)/(h(K 2)h(K 3)) are obtained. In particular, when the conductorf 6 ofK 6 is a primep, $Ch^ - \equiv B\tfrac{{p - 1}}{6}B\tfrac{{5(p - 1)}}{6}(\bmod p)$ , whereC is an explicitly given constant, andB n is the Bernoulli number. These results on real cyclic sextic fields are an extension of the results on quadratic and cyclic quartic fields. 展开更多
关键词 REAL CYCLIC sextic NUMBER field class NUMBER P-ADIC L-function.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部