Protein arginine methyltransferase-6 participates in a range of biological functions,particularly RNA processing,transcription,chromatin remodeling,and endosomal trafficking.However,it remains unclear whether protein ...Protein arginine methyltransferase-6 participates in a range of biological functions,particularly RNA processing,transcription,chromatin remodeling,and endosomal trafficking.However,it remains unclear whether protein arginine methyl transferase-6 modifies neuropathic pain and,if so,what the mechanisms of this effect.In this study,protein arginine methyltransferase-6 expression levels and its effect on neuropathic pain were investigated in the spared nerve injury model,chronic constriction injury model and bone cancer pain model,using immunohistochemistry,western blotting,immunoprecipitation,and label-free proteomic analysis.The results showed that protein arginine methyltransferase-6 mostly co-localized withβ-tubulinⅢin the dorsal root ganglion,and that its expression decreased following spared nerve injury,chronic constriction injury and bone cancer pain.In addition,PRMT6 knockout(Prmt6~(-/-))mice exhibited pain hypersensitivity.Furthermore,the development of spared nerve injury-induced hypersensitivity to mechanical pain was attenuated by blocking the decrease in protein arginine methyltransferase-6 expression.Moreover,when protein arginine methyltransferase-6 expression was downregulated in the dorsal root ganglion in mice without spared nerve injury,increased levels of phosphorylated extracellular signal-regulated kinases were observed in the ipsilateral dorsal horn,and the response to mechanical stimuli was enhanced.Mechanistically,protein arginine methyltransferase-6 appeared to contribute to spared nerve injury-induced neuropathic pain by regulating the expression of heterogeneous nuclear ribonucleoprotein-F.Additionally,protein arginine methyltransfe rase-6-mediated modulation of hete rogeneous nuclear ribonucleoprotein-F expression required amino atids 319 to 388,but not classical H3R2 methylation.These findings indicated that protein arginine methyltransferase-6 is a potential therapeutic target fo r the treatment of peripheral neuro pathic pain.展开更多
The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enh...The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut–brain axis.The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites,which activates the vagus nerve and modulates the immune and neuroendocrine systems.Conversely,alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota,creating a dynamic network of microbial-host interactions.This reciprocal regulation affects neurodevelopment,neurotransmitter control,and behavioral traits,thus playing a role in the modulation of neurological diseases.The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation,mitochondrial dysfunction,abnormal energy metabolism,microglial activation,oxidative stress,and neurotransmitter release,which collectively influence the onset and progression of neurological diseases.This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway,along with its implications for potential therapeutic interventions in neurological diseases.Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders.This can be achieved through various methods such as dietary modifications,probiotic supplements,Chinese herbal extracts,combinations of Chinese herbs,and innovative dosage forms.These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases.展开更多
Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understan...Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understanding the underlying disease-causing mechanisms and building solutions that have implications for a broad spectrum of patients. One potential solution is to develop personalized medicine approaches based on strategies that target the most prevalent cellular events that are perturbed in patients. Especially in patients with a known genetic mutation, it may be possible to understand how these mutations contribute to problems that lead to neurodegeneration. Protein–protein interaction analyses offer great advantages for revealing how proteins interact, which cellular events are primarily involved in these interactions, and how they become affected when key genes are mutated in patients. This line of investigation also suggests novel druggable targets for patients with different mutations. Here, we focus on alsin and spastin, two proteins that are identified as “causative” for amyotrophic lateral sclerosis and hereditary spastic paraplegia, respectively, when mutated. Our review analyzes the protein interactome for alsin and spastin, the canonical pathways that are primarily important for each protein domain, as well as compounds that are either Food and Drug Administration–approved or are in active clinical trials concerning the affected cellular pathways. This line of research begins to pave the way for personalized medicine approaches that are desperately needed for rare neurodegenerative diseases that are complex and heterogeneous.展开更多
The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed...The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed to investigate the neuroprotective effect of overexpressed CHIP on Alzheimer’s disease.We used an adeno-associated virus vector that can cross the blood-brain barrier to mediate CHIP overexpression in APP/PS1 mouse brain.CHIP overexpression significantly ameliorated the performance of APP/PS1 mice in the Morris water maze and nest building tests,reduced amyloid-βplaques,and decreased the expression of both amyloid-βand phosphorylated tau.CHIP also alleviated the concentration of microglia and astrocytes around plaques.In APP/PS1 mice of a younger age,CHIP overexpression promoted an increase in ADAM10 expression and inhibitedβ-site APP cleaving enzyme 1,insulin degrading enzyme,and neprilysin expression.Levels of HSP70 and HSP40,which have functional relevance to CHIP,were also increased.Single nuclei transcriptome sequencing in the hippocampus of CHIP overexpressed mice showed that the lysosomal pathway and oligodendrocyte-related biological processes were up-regulated,which may also reflect a potential mechanism for the neuroprotective effect of CHIP.Our research shows that CHIP effectively reduces the behavior and pathological manifestations of APP/PS1 mice.Indeed,overexpression of CHIP could be a beneficial approach for the treatment of Alzheimer’s disease.展开更多
Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rode...Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rodents and improves memory and slows cognitive decline in patients with Alzheimer’s disease.However,the molecular pathways for exercise-induced adult hippocampal neurogenesis and improved cognition in Alzheimer’s disease are poorly understood.Recently,regulator of G protein signaling 6(RGS6)was identified as the mediator of voluntary running-induced adult hippocampal neurogenesis in mice.Here,we generated novel RGS6fl/fl;APP_(SWE) mice and used retroviral approaches to examine the impact of RGS6 deletion from dentate gyrus neuronal progenitor cells on voluntary running-induced adult hippocampal neurogenesis and cognition in an amyloid-based Alzheimer’s disease mouse model.We found that voluntary running in APP_(SWE) mice restored their hippocampal cognitive impairments to that of control mice.This cognitive rescue was abolished by RGS6 deletion in dentate gyrus neuronal progenitor cells,which also abolished running-mediated increases in adult hippocampal neurogenesis.Adult hippocampal neurogenesis was reduced in sedentary APP_(SWE) mice versus control mice,with basal adult hippocampal neurogenesis reduced by RGS6 deletion in dentate gyrus neural precursor cells.RGS6 was expressed in neurons within the dentate gyrus of patients with Alzheimer’s disease with significant loss of these RGS6-expressing neurons.Thus,RGS6 mediated voluntary running-induced rescue of impaired cognition and adult hippocampal neurogenesis in APP_(SWE) mice,identifying RGS6 in dentate gyrus neural precursor cells as a possible therapeutic target in Alzheimer’s disease.展开更多
BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene ma...BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene manipulation for the treatment of osteoarthritis may not produce satisfactory results.Previous studies have shown that nuclear factorκB could promote the inflammatory pathway in osteoarthritic chondrocytes,and bone morphogenetic protein 4(BMP4)could promote cartilage regeneration.OBJECTIVE:To test whether combined application of AAV-p65shRNA and AAV-BMP4 will yield the synergistic effect on chondrocytes regeneration and osteoarthritis treatment.METHODS:Viral particles containing AAV-p65-shRNA and AAV-BMP4 were prepared.Their efficacy in inhibiting inflammation in chondrocytes and promoting chondrogenesis was assessed in vitro and in vivo by transfecting AAV-p65-shRNA or AAV-BMP4 into cells.The experiments were divided into five groups:PBS group;osteoarthritis group;AAV-BMP4 group;AAV-p65shRNA group;and BMP4-p65shRNA 1:1 group.Samples were collected at 4,12,and 24 weeks postoperatively.Tissue staining,including safranin O and Alcian blue,was applied after collecting articular tissue.Then,the optimal ratio between the two types of transfected viral particles was further investigated to improve the chondrogenic potential of mixed cells in vivo.RESULTS AND CONCLUSION:The combined application of AAV-p65shRNA and AAV-BMP4 together showed a synergistic effect on cartilage regeneration and osteoarthritis treatment.Mixed cells transfected with AAV-p65shRNA and AAV-BMP4 at a 1:1 ratio produced the most extracellular matrix synthesis(P<0.05).In vivo results also revealed that the combination of the two viruses had the highest regenerative potential for osteoarthritic cartilage(P<0.05).In the present study,we also discovered that the combined therapy had the maximum effect when the two viruses were administered in equal proportions.Decreasing either p65shRNA or BMP4 transfected cells resulted in less collagen II synthesis.This implies that inhibiting inflammation by p65shRNA and promoting regeneration by BMP4 are equally important for osteoarthritis treatment.These findings provide a new strategy for the treatment of early osteoarthritis by simultaneously inhibiting cartilage inflammation and promoting cartilage repair.展开更多
BACKGROUND Mixed lineage kinase domain-like protein(MLKL)serves as a critical mediator in necroptosis,a form of regulated cell death linked to various liver diseases.This study aims to specifically investigate the rol...BACKGROUND Mixed lineage kinase domain-like protein(MLKL)serves as a critical mediator in necroptosis,a form of regulated cell death linked to various liver diseases.This study aims to specifically investigate the role of MLKL’s adenosine triphosphate(ATP)-binding pocket in facilitating necroptosis-independent pathways that may contribute to liver disease progression.By focusing on this mechanism,we seek to identify potential therapeutic targets that can modulate MLKL activity,offering new strategies for the prevention and treatment of liver-related pathologies.AIM To investigate the possibility of using the ATP-binding pocket-associated,necro-ptosis-independent MLKL pathway as a target for liver diseases.METHODS Cell death following necroptosis stimuli was evaluated using cell proliferation assays,flow cytometry,and electron microscopy in various cells.The human liver organoid system was used to evaluate whether the MLKL ATP pocket-binding inhibitor could attenuate inflammation.Additionally,alcoholic and non-alcoholic fatty liver diseases animal models were used to determine whether MLKL ATP pocket inhibitors could attenuate liver injury.RESULTS While an MLKL ATP pocket-binding inhibitor did not prevent necroptosis-induced cell death in RAW 264.7 cells,it did reduce the necroptosis-led expression of CXCL2,ICAM,and VCAM.Notably,MLKL ATP pocket inhibitor diminishes the expression of CXCL2,ICAM,and VCAM by inhibiting the IκB kinase and nuclear factor kappa-B pathways without inducing necroptosis-induced cell death in two-dimensional cell culture as well as the human-derived liver organoid system.Although MLKL ATP-binding inhibitor was ineffective in non-alcoholic fatty liver disease animal models,MLKL ATP-binding inhibitor attenuated hepatic inflammation in the alcoholic liver disease model.CONCLUSION MLKL ATP pocket-binding inhibitor exerted anti-inflammatory effects through the necroptosis-independent MLKL pathway in an animal model of alcoholic liver disease.展开更多
In this editorial,the roles of protein tyrosine phosphatase nonreceptor 2(PTPN2)in oncogenic transformation and tumor behavior and its potential as a therapeutic target in the context of gastrointestinal(GI)cancers ar...In this editorial,the roles of protein tyrosine phosphatase nonreceptor 2(PTPN2)in oncogenic transformation and tumor behavior and its potential as a therapeutic target in the context of gastrointestinal(GI)cancers are presented with respect to the article by Li et al published in ninth issue of the World Journal of Gastrointestinal Oncology.PTPN2 is a member of the protein tyrosine phosphatase family of signaling proteins that play crucial roles in the regulation of inflammation and immunity.Accordingly,early findings highlighted the contribution of PTPN2 to the pathogenesis of inflammatory and autoimmune disorders related to its dysfunction.On the other hand,recent studies have indicated that PTPN2 has many different roles in different cancer types,which is associated with the complexity of its regulatory network.PTPN2 dephosphorylates and inactivates EGFR,SRC family kinases,JAK1 and JAK3,and STAT1,STAT3,and STAT5 in cell type-and context-dependent manners,which indicates that PTPN2 can perform either prooncogenic or anti-oncogenic functions depending on the tumor subtype.While PTPN2 has been suggested as a potential therapeutic target in cancer treatment,to the best of ourknowledge,no clear treatment protocol has referred to PTPN2.Although there are only few studies that investigated PTPN2 expression in the GI system cancers,which is a potential limitation,the association of this protein with tumor behavior and the influence of PTPN2 on many therapy-related signaling pathways emphasize that PTPN2 could serve as a new molecular biomarker to predict tumor behavior and as a target for therapeutic intervention against GI cancers.In conclusion,more studies should be performed to better understand the prognostic and therapeutic potential of PTPN2 in GI tumors,especially in tumors resistant to therapy.展开更多
BACKGROUND Although transmembrane protein 106C(TMEM106C)has been elucidated to be overexpressed in cancers,its underlying mechanisms have not yet been fully understood.AIM To investigate the expression levels and mole...BACKGROUND Although transmembrane protein 106C(TMEM106C)has been elucidated to be overexpressed in cancers,its underlying mechanisms have not yet been fully understood.AIM To investigate the expression levels and molecular mechanisms of TMEM106C across 34 different cancer types,including liver hepatocellular carcinoma(LIHC).METHODS We analyzed TMEM106C expression patterns in pan-cancers using microenvironment cell populations counter to evaluate its association with the tumor microenvironment.Gene set enrichment analysis was conducted to identify molecular pathways related to TMEM106C.Chromatin immunoprecipitation followed by sequencing(ChIP-seq)analysis was conducted to identify upstream transcriptional regulators of TMEM106C.In LIHC,we examined mRNA profiles,performed in-house quantitative polymerase chain reaction,immunohistochemistry,and constructed a co-expression gene network.Functional assays,including cell counting kit-8,cell cycle,apoptosis,migration,and invasion,were conducted.The effect of nitidine chloride(NC)on LIHC xenograft was evaluated through RNA sequencing and molecular docking.Finally,potential therapeutic agents targeting TMEM106C were predicted.RESULTS TMEM106C was significantly overexpressed in 27 different cancer types and presaged poor prognosis in four of these types,including LIHC.Across pan-cancers,TMEM106C was inversely correlated to the abundances of immune and stromal cells.Furthermore,TMEM106C was significantly linked to cell cycle and DNA replication pathways in pan-cancers.ChIP-seq analysis predicted CCCTC-binding factor as a pivotal transcriptional factor targeting the TMEM106C gene in pan-cancers.Integrated analysis showed that TMEM106C was upregulated in 4657 LIHC compared with 3652 normal liver tissue[combined standardized mean difference=1.31(1.09,1.52)].Inhouse LIHC samples verified the expression status of TMEM106C.Higher TMEM106C expression signified worse survival conditions in LIHC patients treated with sorafenib,a tyrosine kinase inhibitor(TKI).Co-expressed analysis revealed that TMEM106C were significantly enriched in the cell cycle pathway.Knockout experiments demonstrated that TMEM106C plays a crucial role in LIHC cell proliferation,migration,and invasion,with cell cycle arrest occurring at the DNA synthesis phase,and increased apoptosis.Notably,TMEM106C upregulation was attenuated by NC treatment.Finally,TMEM106C expression levels were significantly correlated with the drug sensitivity of anti-hepatocellular carcinoma agents,including JNJ-42756493,a TKI agent.CONCLUSION Overexpressed TMEM106C was predicted as an oncogene in pan-cancers,which may serve as a promising therapeutic target for various cancers,including LIHC.Targeting TMEM106C could potentially offer a novel direction in overcoming TKI resistance specifically in LIHC.Future research directions include in-depth experimental validation and exploration of TMEM106C’s role in other cancer types.展开更多
BACKGROUND Upper gastrointestinal hemorrhage is a life-threatening manifestation of cow’s milk protein allergy(CMPA).We analyze the clinical characteristics of a case of milk protein allergy manifested as severe uppe...BACKGROUND Upper gastrointestinal hemorrhage is a life-threatening manifestation of cow’s milk protein allergy(CMPA).We analyze the clinical characteristics of a case of milk protein allergy manifested as severe upper gastrointestinal hemorrhage.CASE SUMMARY The hospital admitted a 2-month-old male infant due to“melena for 6 days,he-matemesis twice”.The main symptom was melena,initially occurring once or twice per day,then gradually increasing to five or six times per day at their peak.During the course of the illness,the infant vomited blood,but there were no re-ports of vomiting,fever,pale complexion,dyspnea,wheezing,or difficulty brea-thing.Laboratory tests showed hemoglobin level of 87 g/L,platelet count of 349×109/L,and eosinophil percentage of 0.031.Coagulation studies were normal.After avoiding certain foods and feeding with an amino acid formula for 2 weeks,a repeat gastroscopy revealed less bleeding.After six weeks,a positive oral food challenge test confirmed a severe CMPA.At the 4-month follow-up,there was no gastrointestinal bleeding,and the infant was growing and developing well.CONCLUSION The manifestations of milk protein allergy are diverse and nonspecific,with gas-trointestinal bleeding being less common,especially in infants.When infants present with unexplained massive hematemesis,it’s critical to investigate the possibility of CMPA.展开更多
BACKGROUND Serum retinol-binding protein(RBP)is the primary transport protein of circulating vitamin A.RBP has a crucial role in maintaining nutrient metabolism and physiologic homeostasis.Several studies have indicat...BACKGROUND Serum retinol-binding protein(RBP)is the primary transport protein of circulating vitamin A.RBP has a crucial role in maintaining nutrient metabolism and physiologic homeostasis.Several studies have indicated that serum RBP participates in the progression of diabetes and diabetes-related complications.However,the impact of serum RBP on lower limb atherosclerosis has not been determined in individuals with type 2 diabetes mellitus(T2DM).AIM To determine the association between serum RBP and lower limb atherosclerosis in individuals with T2DM.METHODS This retrospective study enrolled 4428 eligible T2DM patients and divided the patients into non-lower limb atherosclerosis(n=1913)and lower limb atherosclerosis groups(n=2515)based on lower limb arterial ultrasonography results.At hospital admission,baseline serum RBP levels were assessed,and all subjects were categorized into three groups(Q1-Q3)based on RBP tertiles.Logistic regression,restricted cubic spline regression,subgroup analysis,and machine learning were used to assess the association between RBP levels and lower limb atherosclerosis risk.RESULTS Among 4428 individuals with T2DM,2515(56.80%)had lower limb atherosclerosis.Logistic analysis showed that lower limb atherosclerosis risk increased by 1%for every 1 unit rise in serum RBP level(odds ratio=1.01,95%confidence interval:1.00-1.02,P=0.004).Patients in the highest tertile group(Q3)had a higher lower limb atherosclerosis risk compared to the lowest tertile group(Q1)(odds ratio=1.36,95%confidence interval:1.12-1.67,P=0.002).The lower limb atherosclerosis risk gradually increased with an increase in RBP tertile(P for trend=0.005).Restricted cubic spline analysis indicated a linear correlation between serum RBP levels and lower limb atherosclerosis risk(non-linear P<0.05).Machine learning demonstrated the significance and diagnostic value of serum RBP in predicting lower limb atherosclerosis risk.CONCLUSION Elevated serum RBP levels correlate with an increased lower limb atherosclerosis risk in individuals with T2DM.展开更多
BACKGROUND Gastric cancer is the most common malignancy of the digestive system and surgical resection is the primary treatment.Advances in surgical technology have reduced the risk of complications after radical gast...BACKGROUND Gastric cancer is the most common malignancy of the digestive system and surgical resection is the primary treatment.Advances in surgical technology have reduced the risk of complications after radical gastrectomy;however,post-surgical pancreatic fistula remain a serious issue.These fistulas can lead to abdominal infections,anastomotic leakage,increased costs,and pain;thus,early diagnosis and prevention are crucial for a better prognosis.Currently,C-reactive protein(CRP),procalcitonin(PCT),and total bilirubin(TBil)levels are used to predict post-operative infections and anastomotic leakage.However,their predictive value for pancreatic fistula after radical gastrectomy for gastric cancer remains unclear.The present study was conducted to determine their predictive value.AIM To determine the predictive value of CRP,PCT,and TBil levels for pancreatic fistula after gastric cancer surgery.METHODS In total,158 patients who underwent radical gastrectomy for gastric cancer at our hospital between January 2019 and January 2023 were included.The patients were assigned to a pancreatic fistula group or a non-pancreatic fistula group.Multivariate logistic analysis was conducted to assess the factors influencing development of a fistula.Receiver operating characteristic(ROC)curves were used to determine the predictive value of serum CRP,PCT,and TBil levels on day 1 postsurgery.RESULTS On day 1 post-surgery,the CRP,PCT,and TBil levels were significantly higher in the pancreatic fistula group than in the non-pancreatic fistula group(P<0.05).A higher fistula grade was associated with higher levels of the indices.Univariate analysis revealed significant differences in the presence of diabetes,hyperlipidemia,pancreatic injury,splenectomy,and the biomarker levels(P<0.05).Logistic multivariate analysis identified diabetes,hyperlipidemia,pancreatic injury,CRP level,and PCT level as independent risk factors.ROC curves yielded predictive values for CRP,PCT,and TBil levels,with the PCT level having the highest area under the curve(AUC)of 0.80[95%confidence interval(CI):0.72-0.90].Combined indicators improved the predictive value,with an AUC of 0.86(95%CI:0.78-0.93).CONCLUSION Elevated CRP,PCT,and TBil levels predict risk of pancreatic fistula post-gastrectomy for gastric cancer.展开更多
BACKGROUND Unraveling the pathogenesis of colorectal cancer(CRC)can aid in developing prevention and treatment strategies.Aurora kinase A(AURKA)is a key participant in mitotic control and interacts with its co-activat...BACKGROUND Unraveling the pathogenesis of colorectal cancer(CRC)can aid in developing prevention and treatment strategies.Aurora kinase A(AURKA)is a key participant in mitotic control and interacts with its co-activator,the targeting protein for Xklp2(TPX2)microtubule nucleation factor.AURKA is associated with poor clinical outcomes and high risks of CRC recurrence.AURKA/TPX2 co-overexpression in cancer may contribute to tumorigenesis.Despite its pivotal role in CRC development and progression,the action mechanism of AURKA remains unclear.Further research is needed to explore the complex interplay between AURKA and TPX2 and to develop effective targeted treatments for patients with CRC.AIM To compare effects of AURKA and TPX2 and their combined knockdown on CRC cells.METHODS We evaluated three CRC gene datasets about CRC(GSE32323,GSE25071,and GSE21510).Potential hub genes associated with CRC onset were identified using the Venn,search tool for the retrieval of interacting genes,and KOBAS platforms,with AURKA and TPX2 emerging as significant factors.Subsequently,cell models with knockdown of AURKA,TPX2,or both were constructed using SW480 and LOVO cells.Quantitative real-time polymerase chain reaction,western blotting,cell counting kit-8,cell cloning assays,flow cytometry,and Transwell assays were used.RESULTS Forty-three highly expressed genes and 39 poorly expressed genes overlapped in cancer tissues compared to controls from three datasets.In the protein-protein interaction network of highly expressed genes,AURKA was one of key genes.Its combined score with TPX2 was 0.999,and their co-expression score was 0.846.In CRC cells,knockdown of AURKA,TPX2,or both reduced cell viability and colony number,while blocking G0/G1 phase and enhancing cell apoptosis.Additionally,they were weakened cell proliferation and migration abilities.Furthermore,the expression levels of B-cell lymphoma-2-Associated X,caspase 3,and tumor protein P53,and E-cadherin increased with a decrease in B-cell lymphoma-2,N-cadherin,and vimentin proteins.These effects were amplified when both AURKA and TPX2 were concurrently downregulated.CONCLUSION Combined knockdown of AURKA and TPX2 was effective in suppressing the malignant phenotype in CRC.Coinhibition of gene expression is a potential developmental direction for CRC treatment.展开更多
BACKGROUND Macrophages are central to the orchestration of immune responses,inflammatory processes,and the pathogenesis of diabetic complications.The dynamic polarization of macrophages into M1 and M2 phenotypes criti...BACKGROUND Macrophages are central to the orchestration of immune responses,inflammatory processes,and the pathogenesis of diabetic complications.The dynamic polarization of macrophages into M1 and M2 phenotypes critically modulates inflammation and contributes to the progression of diabetic nephropathy.Sodiumglucose cotransporter 2 inhibitors such as dapagliflozin,which are acclaimed for their efficacy in diabetes management,may influence macrophage polarization,thereby ameliorating diabetic nephropathy.This investigation delves into these mechanistic pathways,aiming to elucidate novel therapeutic strategies for diabetes.AIM To investigate the inhibitory effect of dapagliflozin on macrophage M1 polarization and apoptosis and to explore its mechanism of action.METHODS We established a murine model of type 2 diabetes mellitus and harvested peritoneal macrophages following treatment with dapagliflozin.Concurrently,the human monocyte cell line cells were used for in vitro studies.Macrophage viability was assessed in a cell counting kit 8 assay,whereas apoptosis was evaluated by Annexin V/propidium iodide staining.Protein expression was examined through western blotting,and the expression levels of macrophage M1 surface immunosorbent assay,and quantitative real-time polymerase chain reaction analyses.RESULTS Dapagliflozin attenuated M1 macrophage polarization and mitigated apoptosis in the abdominal macrophages of diabetic mice,evidenced by the downregulation of proapoptotic genes(Caspase 3),inflammatory cytokines[interleukin(IL)-6,tumor necrosis factor-α,and IL-1β],and M1 surface markers(inducible nitric oxide synthase,and cluster of differentiation 86),as well as the upregulation of the antiapoptotic gene BCL2.Moreover,dapagliflozin suppressed the expression of proteins associated with the phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)signaling pathway(PI3K,AKT,phosphorylated protein kinase B).These observations were corroborated in vitro,where we found that the modulatory effects of dapagliflozin were abrogated by 740Y-P,an activator of the PI3K/AKT signaling pathway.CONCLUSION Dapagliflozin attenuates the polarization of macrophages toward the M1 phenotype,thereby mitigating inflammation and promoting macrophage apoptosis.These effects are likely mediated through the inhibition of the PI3K/AKT signaling pathway.展开更多
The nucleotide-binding domain,leucine-rich repeat,and pyrin domain-containing protein 3(NLRP3)inflammasome is a critical modulator in inflammatory disease.Activation and mutation of NLRP3 can cause severe inflammation...The nucleotide-binding domain,leucine-rich repeat,and pyrin domain-containing protein 3(NLRP3)inflammasome is a critical modulator in inflammatory disease.Activation and mutation of NLRP3 can cause severe inflammation in diseases such as chronic infantile neurologic cutaneous and articular syndrome,Muckle-Wells syndrome,and familial cold autoinflammatory syndrome 1.To date,a great effort has been made to decode the underlying mechanisms of NLRP3 activation.The priming and activation of NLRP3 drive the maturation and release of active interleukin(IL)-18 and IL-1βto cause inflammation and pyroptosis,which can significantly trigger many diseases including inflammatory diseases,immune disorders,metabolic diseases,and neurodegenerative diseases.The investigation of NLRP3 as a therapeutic target for disease treatment is a hot topic in both preclinical studies and clinical trials.Developing potent NLRP3 inhibitors and downstream IL-1 inhibitors attracts wide-spectrum attention in both research and pharmaceutical fields.In this minireview,we first updated the molecular mechanisms involved in NLRP3 inflammasome activation and the associated downstream signaling pathways.We then reviewed the molecular and cellular pathways of NLRP3 in many diseases,including obesity,diabetes,and other metabolic diseases.In addition,we briefly reviewed the roles of NLRP3 in cancer growth and relative immune checkpoint therapy.Finally,clinical trials with treatments targeting NLRP3 and its downstream signaling pathways were summarized.展开更多
BACKGROUND Diabetic wound injury is a significant and common complication in individuals with diabetes.N6-methyladenosine(m6A)-related epigenetic regulation is widely involved in the pathogenesis of diabetes complicat...BACKGROUND Diabetic wound injury is a significant and common complication in individuals with diabetes.N6-methyladenosine(m6A)-related epigenetic regulation is widely involved in the pathogenesis of diabetes complications.However,the function of m6A methyltransferase Wilms tumor 1-associated protein(WTAP)in diabetic wound healing remains elusive.AIM To investigate the potential epigenetic regulatory mechanism of WTAP during diabetic wound healing.METHODS Human umbilical vein endothelial cells(HUVECs)were induced with high glucose(HG)to establish in vitro cell model.Male BALB/c mice were intraperitoneally injected with streptozotocin to mimic diabetes,and full-thickness excision was made to mimic diabetic wound healing.HG-induced HUVECs and mouse models were treated with WTAP siRNAs and DNA methyltransferase 1(DNMT1)overexpression vectors.Cell viability and migration ability were detected by cell counting kit-8 and Transwell assays.In vitro angiogenesis was measured using a tube formation experiment.The images of wounds were captured,and re-epithelialization and collagen deposition of skin tissues were analyzed using hematoxylin and eosin staining and Masson’s trichrome staining.RESULTS The expression of several m6A methyltransferases,including METTL3,METTL14,METTL16,KIAA1429,WTAP,and RBM15,were measured.WTAP exhibited the most significant elevation in HG-induced HUVECs compared with the normal control.WTAP depletion notably restored cell viability and enhanced tube formation ability and migration of HUVECs suppressed by HG.The unclosed wound area of mice was smaller in WTAP knockdowntreated mice than in control mice at nine days post-wounding,along with enhanced re-epithelialization rate and collagen deposition.The m6A levels on DNMT1 mRNA in HUVECs were repressed by WTAP knockdown in HUVECs.The mRNA levels and expression of DNMT1 were inhibited by WTAP depletion in HUVECs.Overexpression of DNMT1 in HUVECs notably reversed the effects of WTAP depletion on HG-induced HUVECs.CONCLUSION WTAP expression is elevated in HG-induced HUVECs and epigenetically regulates the m6A modification of DNMT1 to impair diabetic wound healing.展开更多
BACKGROUND Diabetic macular edema(DME)is the most common cause of vision loss in people with diabetes.Tight junction disruption of the retinal pigment epithelium(RPE)cells has been reported to induce DME development.S...BACKGROUND Diabetic macular edema(DME)is the most common cause of vision loss in people with diabetes.Tight junction disruption of the retinal pigment epithelium(RPE)cells has been reported to induce DME development.SMAD-specific E3 ubiquitin protein ligase(SMURF)1 was associated with the tight junctions of cells.However,the mechanism of SMURF1 in the DME process remains unclear.AIM To investigate the role of SMURF1 in RPE cell tight junction during DME.METHODS ARPE-19 cells treated with high glucose(HG)and desferrioxamine mesylate(DFX)for establishment of the DME cell model.DME mice models were constructed by streptozotocin induction.The trans-epithelial electrical resistance and permeability of RPE cells were analyzed.The expressions of tight junction-related and autophagy-related proteins were determined.The interaction between insulin like growth factor 2 mRNA binding protein 2(IGF2BP2)and SMURF1 mRNA was verified by RNA immunoprecipitation(RIP).SMURF1 N6-methyladenosine(m6A)level was detected by methylated RIP.RESULTS SMURF1 and vascular endothelial growth factor(VEGF)were upregulated in DME.SMURF1 knockdown reduced HG/DFX-induced autophagy,which protected RPE cell tight junctions and ameliorated retinal damage in DME mice.SMURF1 activated the Wnt/β-catenin-VEGF signaling pathway by promoting WNT inhibitory factor(WIF)1 ubiquitination and degradation.IGF2BP2 upregulated SMURF1 expression in an m6A modification-dependent manner.CONCLUSION M6A-modified SMURF1 promoted WIF1 ubiquitination and degradation,which activated autophagy to inhibit RPE cell tight junctions,ultimately promoting DME progression.展开更多
Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s...Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s organs.Therefore,increasing the Bt protein concentration at the boll stage,especially in bolls,has become the main goal for increasing insect resistance in cotton.In this study,two protein degradation inhibitors(ethylene diamine tetra acetic acid(EDTA)and leupeptin)were sprayed on the bolls,subtending leaves,and whole cotton plants at the peak flowering stage of two Bt cultivars(medium maturation Sikang 1(SK1))and early maturation Zhongmian 425(ZM425)in 2019 and 2020.The Bt protein content and protein degradation metabolism were assessed.The results showed that the Bt protein concentrations were enhanced by 21.3 to 38.8%and 25.0 to 38.6%in the treated bolls of SK1 and ZM425 respectively,while they were decreased in the subtending leaves of these treated bolls.In the treated leaves,the Bt protein concentrations increased by 7.6 to 23.5%and 11.2 to 14.9%in SK1 and ZM425,respectively.The combined application of EDTA and leupeptin to the whole cotton plant increased the Bt protein concentrations in both bolls and subtending leaves.The Bt protein concentrations in bolls were higher,increasing by 22.5 to 31.0%and 19.6 to 32.5%for SK1 and ZM425,respectively.The organs treated with EDTA or/and leupeptin showed reduced free amino acid contents,protease and peptidase activities and significant enhancements in soluble protein contents.These results indicated that inhibiting protein degradation could improve the protein content,thus increasing the Bt protein concentrations in the bolls or/and leaves of cotton plants.Therefore,the increase in the Bt protein concentration without yield reduction suggested that these two protein degradation inhibitors may be applicable for improving insect resistance in cotton production.展开更多
In this study,we investigated the effects of major royal jelly proteins(MRJPs)on the estrogen,gut microbiota,and immunological responses in mice.Mice given 250 or 500 mg/kg,not 125 mg/kg of MRJPs,enhanced the prolifer...In this study,we investigated the effects of major royal jelly proteins(MRJPs)on the estrogen,gut microbiota,and immunological responses in mice.Mice given 250 or 500 mg/kg,not 125 mg/kg of MRJPs,enhanced the proliferation of splenocytes in response to mitogens.The splenocytes and mesenteric lymphocytes activated by T-cell mitogens(Con A and anti-CD3/CD28 antibodies)released high levels of IL-2 but low levels of IFN-γand IL-17A.The release of IL-4 was unaffected by MRJPs.Additionally,splenocytes and mesenteric lymphocytes activated by LPS were prevented by MRJPs at the same dose as that required for producing IL-1βand IL-6,two pro-inflammatory cytokines.The production of IL-1β,IL-6,and IFN-γwas negatively associated with estrogen levels,which were higher in the MRJP-treated animals than in the control group.Analysis of the gut microbiota revealed that feeding mice 250 mg/kg of MRJPs maintained the stability of the natural intestinal microflora of mice.Additionally,the LEf Se analysis identified biomarkers in the MRJP-treated mice,including Prevotella,Bacillales,Enterobacteriales,Gammaproteobacteria,Candidatus_Arthromitus,and Shigella.Our results showed that MRJPs are important components of royal jelly that modulate host immunity and hormone levels and help maintain gut microbiota stability.展开更多
The onset of amyotrophic lateral sclerosis is usually characterized by focal death of both upper and/or lower motor neurons occurring in the motor cortex,basal ganglia,brainstem,and spinal cord,and commonly involves t...The onset of amyotrophic lateral sclerosis is usually characterized by focal death of both upper and/or lower motor neurons occurring in the motor cortex,basal ganglia,brainstem,and spinal cord,and commonly involves the muscles of the upper and/or lower extremities,and the muscles of the bulbar and/or respiratory regions.However,as the disease progresses,it affects the adjacent body regions,leading to generalized muscle weakness,occasionally along with memory,cognitive,behavioral,and language impairments;respiratory dysfunction occurs at the final stage of the disease.The disease has a complicated pathophysiology and currently,only riluzole,edaravone,and phenylbutyrate/taurursodiol are licensed to treat amyotrophic lateral sclerosis in many industrialized countries.The TAR DNA-binding protein 43 inclusions are observed in 97%of those diagnosed with amyotrophic lateral sclerosis.This review provides a preliminary overview of the potential effects of TAR DNAbinding protein 43 in the pathogenesis of amyotrophic lateral sclerosis,including the abnormalities in nucleoplasmic transport,RNA function,post-translational modification,liquid-liquid phase separation,stress granules,mitochondrial dysfunction,oxidative stress,axonal transport,protein quality control system,and non-cellular autonomous functions(e.g.,glial cell functions and prion-like propagation).展开更多
基金supported by the National Natural Science Foundation of China,Nos.82001178(to LW),81901129(to LH),82001175(to FX)Shanghai Sailing Program,No.20YF1439200(to LW)+1 种基金the Natural Science Foundation of Shanghai,China,No.23ZR1450800(to LH)and the Fundamental Research Funds for the Central Universities,No.YG2023LC15(to ZX)。
文摘Protein arginine methyltransferase-6 participates in a range of biological functions,particularly RNA processing,transcription,chromatin remodeling,and endosomal trafficking.However,it remains unclear whether protein arginine methyl transferase-6 modifies neuropathic pain and,if so,what the mechanisms of this effect.In this study,protein arginine methyltransferase-6 expression levels and its effect on neuropathic pain were investigated in the spared nerve injury model,chronic constriction injury model and bone cancer pain model,using immunohistochemistry,western blotting,immunoprecipitation,and label-free proteomic analysis.The results showed that protein arginine methyltransferase-6 mostly co-localized withβ-tubulinⅢin the dorsal root ganglion,and that its expression decreased following spared nerve injury,chronic constriction injury and bone cancer pain.In addition,PRMT6 knockout(Prmt6~(-/-))mice exhibited pain hypersensitivity.Furthermore,the development of spared nerve injury-induced hypersensitivity to mechanical pain was attenuated by blocking the decrease in protein arginine methyltransferase-6 expression.Moreover,when protein arginine methyltransferase-6 expression was downregulated in the dorsal root ganglion in mice without spared nerve injury,increased levels of phosphorylated extracellular signal-regulated kinases were observed in the ipsilateral dorsal horn,and the response to mechanical stimuli was enhanced.Mechanistically,protein arginine methyltransferase-6 appeared to contribute to spared nerve injury-induced neuropathic pain by regulating the expression of heterogeneous nuclear ribonucleoprotein-F.Additionally,protein arginine methyltransfe rase-6-mediated modulation of hete rogeneous nuclear ribonucleoprotein-F expression required amino atids 319 to 388,but not classical H3R2 methylation.These findings indicated that protein arginine methyltransferase-6 is a potential therapeutic target fo r the treatment of peripheral neuro pathic pain.
基金supported by the National Natural Science Foundation of China,No.82003965the Science and Technology Research Project of Sichuan Provincial Administration of Traditional Chinese Medicine,No.2024MS167(to LH)+2 种基金the Xinglin Scholar Program of Chengdu University of Traditional Chinese Medicine,No.QJRC2022033(to LH)the Improvement Plan for the'Xinglin Scholar'Scientific Research Talent Program at Chengdu University of Traditional Chinese Medicine,No.XKTD2023002(to LH)the 2023 National Project of the College Students'Innovation and Entrepreneurship Training Program at Chengdu University of Traditional Chinese Medicine,No.202310633028(to FD)。
文摘The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut–brain axis.The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites,which activates the vagus nerve and modulates the immune and neuroendocrine systems.Conversely,alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota,creating a dynamic network of microbial-host interactions.This reciprocal regulation affects neurodevelopment,neurotransmitter control,and behavioral traits,thus playing a role in the modulation of neurological diseases.The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation,mitochondrial dysfunction,abnormal energy metabolism,microglial activation,oxidative stress,and neurotransmitter release,which collectively influence the onset and progression of neurological diseases.This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway,along with its implications for potential therapeutic interventions in neurological diseases.Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders.This can be achieved through various methods such as dietary modifications,probiotic supplements,Chinese herbal extracts,combinations of Chinese herbs,and innovative dosage forms.These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases.
基金funded by NIH-NIA R01AG061708 (to PHO)Patrick Grange Memorial Foundation (to PHO)+1 种基金A Long Swim (to PHO)CureSPG4 Foundation (to PHO)。
文摘Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understanding the underlying disease-causing mechanisms and building solutions that have implications for a broad spectrum of patients. One potential solution is to develop personalized medicine approaches based on strategies that target the most prevalent cellular events that are perturbed in patients. Especially in patients with a known genetic mutation, it may be possible to understand how these mutations contribute to problems that lead to neurodegeneration. Protein–protein interaction analyses offer great advantages for revealing how proteins interact, which cellular events are primarily involved in these interactions, and how they become affected when key genes are mutated in patients. This line of investigation also suggests novel druggable targets for patients with different mutations. Here, we focus on alsin and spastin, two proteins that are identified as “causative” for amyotrophic lateral sclerosis and hereditary spastic paraplegia, respectively, when mutated. Our review analyzes the protein interactome for alsin and spastin, the canonical pathways that are primarily important for each protein domain, as well as compounds that are either Food and Drug Administration–approved or are in active clinical trials concerning the affected cellular pathways. This line of research begins to pave the way for personalized medicine approaches that are desperately needed for rare neurodegenerative diseases that are complex and heterogeneous.
基金supported by the National Natural Science Foundation of China,Nos.91849115 and U1904207(to YX),81974211 and 82171247(to CS)Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences,No.2020-PT310-01(to YX).
文摘The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed to investigate the neuroprotective effect of overexpressed CHIP on Alzheimer’s disease.We used an adeno-associated virus vector that can cross the blood-brain barrier to mediate CHIP overexpression in APP/PS1 mouse brain.CHIP overexpression significantly ameliorated the performance of APP/PS1 mice in the Morris water maze and nest building tests,reduced amyloid-βplaques,and decreased the expression of both amyloid-βand phosphorylated tau.CHIP also alleviated the concentration of microglia and astrocytes around plaques.In APP/PS1 mice of a younger age,CHIP overexpression promoted an increase in ADAM10 expression and inhibitedβ-site APP cleaving enzyme 1,insulin degrading enzyme,and neprilysin expression.Levels of HSP70 and HSP40,which have functional relevance to CHIP,were also increased.Single nuclei transcriptome sequencing in the hippocampus of CHIP overexpressed mice showed that the lysosomal pathway and oligodendrocyte-related biological processes were up-regulated,which may also reflect a potential mechanism for the neuroprotective effect of CHIP.Our research shows that CHIP effectively reduces the behavior and pathological manifestations of APP/PS1 mice.Indeed,overexpression of CHIP could be a beneficial approach for the treatment of Alzheimer’s disease.
基金supported by the National Institutes of Health,Nos.AA025919,AA025919-03S1,and AA025919-05S1(all to RAF).
文摘Hippocampal neuronal loss causes cognitive dysfunction in Alzheimer’s disease.Adult hippocampal neurogenesis is reduced in patients with Alzheimer’s disease.Exercise stimulates adult hippocampal neurogenesis in rodents and improves memory and slows cognitive decline in patients with Alzheimer’s disease.However,the molecular pathways for exercise-induced adult hippocampal neurogenesis and improved cognition in Alzheimer’s disease are poorly understood.Recently,regulator of G protein signaling 6(RGS6)was identified as the mediator of voluntary running-induced adult hippocampal neurogenesis in mice.Here,we generated novel RGS6fl/fl;APP_(SWE) mice and used retroviral approaches to examine the impact of RGS6 deletion from dentate gyrus neuronal progenitor cells on voluntary running-induced adult hippocampal neurogenesis and cognition in an amyloid-based Alzheimer’s disease mouse model.We found that voluntary running in APP_(SWE) mice restored their hippocampal cognitive impairments to that of control mice.This cognitive rescue was abolished by RGS6 deletion in dentate gyrus neuronal progenitor cells,which also abolished running-mediated increases in adult hippocampal neurogenesis.Adult hippocampal neurogenesis was reduced in sedentary APP_(SWE) mice versus control mice,with basal adult hippocampal neurogenesis reduced by RGS6 deletion in dentate gyrus neural precursor cells.RGS6 was expressed in neurons within the dentate gyrus of patients with Alzheimer’s disease with significant loss of these RGS6-expressing neurons.Thus,RGS6 mediated voluntary running-induced rescue of impaired cognition and adult hippocampal neurogenesis in APP_(SWE) mice,identifying RGS6 in dentate gyrus neural precursor cells as a possible therapeutic target in Alzheimer’s disease.
文摘BACKGROUND:Adeno-associated virus(AAV)gene therapy has been proven to be reliable and safe for the treatment of osteoarthritis in recent years.However,given the complexity of osteoarthritis pathogenesis,single gene manipulation for the treatment of osteoarthritis may not produce satisfactory results.Previous studies have shown that nuclear factorκB could promote the inflammatory pathway in osteoarthritic chondrocytes,and bone morphogenetic protein 4(BMP4)could promote cartilage regeneration.OBJECTIVE:To test whether combined application of AAV-p65shRNA and AAV-BMP4 will yield the synergistic effect on chondrocytes regeneration and osteoarthritis treatment.METHODS:Viral particles containing AAV-p65-shRNA and AAV-BMP4 were prepared.Their efficacy in inhibiting inflammation in chondrocytes and promoting chondrogenesis was assessed in vitro and in vivo by transfecting AAV-p65-shRNA or AAV-BMP4 into cells.The experiments were divided into five groups:PBS group;osteoarthritis group;AAV-BMP4 group;AAV-p65shRNA group;and BMP4-p65shRNA 1:1 group.Samples were collected at 4,12,and 24 weeks postoperatively.Tissue staining,including safranin O and Alcian blue,was applied after collecting articular tissue.Then,the optimal ratio between the two types of transfected viral particles was further investigated to improve the chondrogenic potential of mixed cells in vivo.RESULTS AND CONCLUSION:The combined application of AAV-p65shRNA and AAV-BMP4 together showed a synergistic effect on cartilage regeneration and osteoarthritis treatment.Mixed cells transfected with AAV-p65shRNA and AAV-BMP4 at a 1:1 ratio produced the most extracellular matrix synthesis(P<0.05).In vivo results also revealed that the combination of the two viruses had the highest regenerative potential for osteoarthritic cartilage(P<0.05).In the present study,we also discovered that the combined therapy had the maximum effect when the two viruses were administered in equal proportions.Decreasing either p65shRNA or BMP4 transfected cells resulted in less collagen II synthesis.This implies that inhibiting inflammation by p65shRNA and promoting regeneration by BMP4 are equally important for osteoarthritis treatment.These findings provide a new strategy for the treatment of early osteoarthritis by simultaneously inhibiting cartilage inflammation and promoting cartilage repair.
基金Supported by the National Research Foundation of Korea Grant Funded by the Korea Government,No.RS-2024-00440477the Korea Institute of Science and Technology Institutional Program,No.2E33111-24-042.
文摘BACKGROUND Mixed lineage kinase domain-like protein(MLKL)serves as a critical mediator in necroptosis,a form of regulated cell death linked to various liver diseases.This study aims to specifically investigate the role of MLKL’s adenosine triphosphate(ATP)-binding pocket in facilitating necroptosis-independent pathways that may contribute to liver disease progression.By focusing on this mechanism,we seek to identify potential therapeutic targets that can modulate MLKL activity,offering new strategies for the prevention and treatment of liver-related pathologies.AIM To investigate the possibility of using the ATP-binding pocket-associated,necro-ptosis-independent MLKL pathway as a target for liver diseases.METHODS Cell death following necroptosis stimuli was evaluated using cell proliferation assays,flow cytometry,and electron microscopy in various cells.The human liver organoid system was used to evaluate whether the MLKL ATP pocket-binding inhibitor could attenuate inflammation.Additionally,alcoholic and non-alcoholic fatty liver diseases animal models were used to determine whether MLKL ATP pocket inhibitors could attenuate liver injury.RESULTS While an MLKL ATP pocket-binding inhibitor did not prevent necroptosis-induced cell death in RAW 264.7 cells,it did reduce the necroptosis-led expression of CXCL2,ICAM,and VCAM.Notably,MLKL ATP pocket inhibitor diminishes the expression of CXCL2,ICAM,and VCAM by inhibiting the IκB kinase and nuclear factor kappa-B pathways without inducing necroptosis-induced cell death in two-dimensional cell culture as well as the human-derived liver organoid system.Although MLKL ATP-binding inhibitor was ineffective in non-alcoholic fatty liver disease animal models,MLKL ATP-binding inhibitor attenuated hepatic inflammation in the alcoholic liver disease model.CONCLUSION MLKL ATP pocket-binding inhibitor exerted anti-inflammatory effects through the necroptosis-independent MLKL pathway in an animal model of alcoholic liver disease.
文摘In this editorial,the roles of protein tyrosine phosphatase nonreceptor 2(PTPN2)in oncogenic transformation and tumor behavior and its potential as a therapeutic target in the context of gastrointestinal(GI)cancers are presented with respect to the article by Li et al published in ninth issue of the World Journal of Gastrointestinal Oncology.PTPN2 is a member of the protein tyrosine phosphatase family of signaling proteins that play crucial roles in the regulation of inflammation and immunity.Accordingly,early findings highlighted the contribution of PTPN2 to the pathogenesis of inflammatory and autoimmune disorders related to its dysfunction.On the other hand,recent studies have indicated that PTPN2 has many different roles in different cancer types,which is associated with the complexity of its regulatory network.PTPN2 dephosphorylates and inactivates EGFR,SRC family kinases,JAK1 and JAK3,and STAT1,STAT3,and STAT5 in cell type-and context-dependent manners,which indicates that PTPN2 can perform either prooncogenic or anti-oncogenic functions depending on the tumor subtype.While PTPN2 has been suggested as a potential therapeutic target in cancer treatment,to the best of ourknowledge,no clear treatment protocol has referred to PTPN2.Although there are only few studies that investigated PTPN2 expression in the GI system cancers,which is a potential limitation,the association of this protein with tumor behavior and the influence of PTPN2 on many therapy-related signaling pathways emphasize that PTPN2 could serve as a new molecular biomarker to predict tumor behavior and as a target for therapeutic intervention against GI cancers.In conclusion,more studies should be performed to better understand the prognostic and therapeutic potential of PTPN2 in GI tumors,especially in tumors resistant to therapy.
基金Supported by the National Natural Science Foundation of China,No.NSFC82160762,No.NSFC82460783Natural Science Foundation of Guangxi,No.2022GXNSFBA035657Innovation Project of Guangxi Graduate Education,No.JGY2023068,No.YCSW2023220.
文摘BACKGROUND Although transmembrane protein 106C(TMEM106C)has been elucidated to be overexpressed in cancers,its underlying mechanisms have not yet been fully understood.AIM To investigate the expression levels and molecular mechanisms of TMEM106C across 34 different cancer types,including liver hepatocellular carcinoma(LIHC).METHODS We analyzed TMEM106C expression patterns in pan-cancers using microenvironment cell populations counter to evaluate its association with the tumor microenvironment.Gene set enrichment analysis was conducted to identify molecular pathways related to TMEM106C.Chromatin immunoprecipitation followed by sequencing(ChIP-seq)analysis was conducted to identify upstream transcriptional regulators of TMEM106C.In LIHC,we examined mRNA profiles,performed in-house quantitative polymerase chain reaction,immunohistochemistry,and constructed a co-expression gene network.Functional assays,including cell counting kit-8,cell cycle,apoptosis,migration,and invasion,were conducted.The effect of nitidine chloride(NC)on LIHC xenograft was evaluated through RNA sequencing and molecular docking.Finally,potential therapeutic agents targeting TMEM106C were predicted.RESULTS TMEM106C was significantly overexpressed in 27 different cancer types and presaged poor prognosis in four of these types,including LIHC.Across pan-cancers,TMEM106C was inversely correlated to the abundances of immune and stromal cells.Furthermore,TMEM106C was significantly linked to cell cycle and DNA replication pathways in pan-cancers.ChIP-seq analysis predicted CCCTC-binding factor as a pivotal transcriptional factor targeting the TMEM106C gene in pan-cancers.Integrated analysis showed that TMEM106C was upregulated in 4657 LIHC compared with 3652 normal liver tissue[combined standardized mean difference=1.31(1.09,1.52)].Inhouse LIHC samples verified the expression status of TMEM106C.Higher TMEM106C expression signified worse survival conditions in LIHC patients treated with sorafenib,a tyrosine kinase inhibitor(TKI).Co-expressed analysis revealed that TMEM106C were significantly enriched in the cell cycle pathway.Knockout experiments demonstrated that TMEM106C plays a crucial role in LIHC cell proliferation,migration,and invasion,with cell cycle arrest occurring at the DNA synthesis phase,and increased apoptosis.Notably,TMEM106C upregulation was attenuated by NC treatment.Finally,TMEM106C expression levels were significantly correlated with the drug sensitivity of anti-hepatocellular carcinoma agents,including JNJ-42756493,a TKI agent.CONCLUSION Overexpressed TMEM106C was predicted as an oncogene in pan-cancers,which may serve as a promising therapeutic target for various cancers,including LIHC.Targeting TMEM106C could potentially offer a novel direction in overcoming TKI resistance specifically in LIHC.Future research directions include in-depth experimental validation and exploration of TMEM106C’s role in other cancer types.
基金Supported by the Excellent Medical Talents Training Program of the First Affiliated Hospital of Guangxi Medical University,Difficult and Critical illness Center,Pediatric Clinical Medical Research Center of Guangxi,No.Gui Ke AD22035219and the Key Laboratory of Children’s Disease Research in Guangxi’s Colleges and Universities,Education Department of Guangxi Zhuang Autonomous Region.
文摘BACKGROUND Upper gastrointestinal hemorrhage is a life-threatening manifestation of cow’s milk protein allergy(CMPA).We analyze the clinical characteristics of a case of milk protein allergy manifested as severe upper gastrointestinal hemorrhage.CASE SUMMARY The hospital admitted a 2-month-old male infant due to“melena for 6 days,he-matemesis twice”.The main symptom was melena,initially occurring once or twice per day,then gradually increasing to five or six times per day at their peak.During the course of the illness,the infant vomited blood,but there were no re-ports of vomiting,fever,pale complexion,dyspnea,wheezing,or difficulty brea-thing.Laboratory tests showed hemoglobin level of 87 g/L,platelet count of 349×109/L,and eosinophil percentage of 0.031.Coagulation studies were normal.After avoiding certain foods and feeding with an amino acid formula for 2 weeks,a repeat gastroscopy revealed less bleeding.After six weeks,a positive oral food challenge test confirmed a severe CMPA.At the 4-month follow-up,there was no gastrointestinal bleeding,and the infant was growing and developing well.CONCLUSION The manifestations of milk protein allergy are diverse and nonspecific,with gas-trointestinal bleeding being less common,especially in infants.When infants present with unexplained massive hematemesis,it’s critical to investigate the possibility of CMPA.
基金The study was approved by the ethics committee of Southwest Hospital,the First Affiliated Hospital of Army Medical University of Chinese People's Liberation Army(No.KY2024007).
文摘BACKGROUND Serum retinol-binding protein(RBP)is the primary transport protein of circulating vitamin A.RBP has a crucial role in maintaining nutrient metabolism and physiologic homeostasis.Several studies have indicated that serum RBP participates in the progression of diabetes and diabetes-related complications.However,the impact of serum RBP on lower limb atherosclerosis has not been determined in individuals with type 2 diabetes mellitus(T2DM).AIM To determine the association between serum RBP and lower limb atherosclerosis in individuals with T2DM.METHODS This retrospective study enrolled 4428 eligible T2DM patients and divided the patients into non-lower limb atherosclerosis(n=1913)and lower limb atherosclerosis groups(n=2515)based on lower limb arterial ultrasonography results.At hospital admission,baseline serum RBP levels were assessed,and all subjects were categorized into three groups(Q1-Q3)based on RBP tertiles.Logistic regression,restricted cubic spline regression,subgroup analysis,and machine learning were used to assess the association between RBP levels and lower limb atherosclerosis risk.RESULTS Among 4428 individuals with T2DM,2515(56.80%)had lower limb atherosclerosis.Logistic analysis showed that lower limb atherosclerosis risk increased by 1%for every 1 unit rise in serum RBP level(odds ratio=1.01,95%confidence interval:1.00-1.02,P=0.004).Patients in the highest tertile group(Q3)had a higher lower limb atherosclerosis risk compared to the lowest tertile group(Q1)(odds ratio=1.36,95%confidence interval:1.12-1.67,P=0.002).The lower limb atherosclerosis risk gradually increased with an increase in RBP tertile(P for trend=0.005).Restricted cubic spline analysis indicated a linear correlation between serum RBP levels and lower limb atherosclerosis risk(non-linear P<0.05).Machine learning demonstrated the significance and diagnostic value of serum RBP in predicting lower limb atherosclerosis risk.CONCLUSION Elevated serum RBP levels correlate with an increased lower limb atherosclerosis risk in individuals with T2DM.
文摘BACKGROUND Gastric cancer is the most common malignancy of the digestive system and surgical resection is the primary treatment.Advances in surgical technology have reduced the risk of complications after radical gastrectomy;however,post-surgical pancreatic fistula remain a serious issue.These fistulas can lead to abdominal infections,anastomotic leakage,increased costs,and pain;thus,early diagnosis and prevention are crucial for a better prognosis.Currently,C-reactive protein(CRP),procalcitonin(PCT),and total bilirubin(TBil)levels are used to predict post-operative infections and anastomotic leakage.However,their predictive value for pancreatic fistula after radical gastrectomy for gastric cancer remains unclear.The present study was conducted to determine their predictive value.AIM To determine the predictive value of CRP,PCT,and TBil levels for pancreatic fistula after gastric cancer surgery.METHODS In total,158 patients who underwent radical gastrectomy for gastric cancer at our hospital between January 2019 and January 2023 were included.The patients were assigned to a pancreatic fistula group or a non-pancreatic fistula group.Multivariate logistic analysis was conducted to assess the factors influencing development of a fistula.Receiver operating characteristic(ROC)curves were used to determine the predictive value of serum CRP,PCT,and TBil levels on day 1 postsurgery.RESULTS On day 1 post-surgery,the CRP,PCT,and TBil levels were significantly higher in the pancreatic fistula group than in the non-pancreatic fistula group(P<0.05).A higher fistula grade was associated with higher levels of the indices.Univariate analysis revealed significant differences in the presence of diabetes,hyperlipidemia,pancreatic injury,splenectomy,and the biomarker levels(P<0.05).Logistic multivariate analysis identified diabetes,hyperlipidemia,pancreatic injury,CRP level,and PCT level as independent risk factors.ROC curves yielded predictive values for CRP,PCT,and TBil levels,with the PCT level having the highest area under the curve(AUC)of 0.80[95%confidence interval(CI):0.72-0.90].Combined indicators improved the predictive value,with an AUC of 0.86(95%CI:0.78-0.93).CONCLUSION Elevated CRP,PCT,and TBil levels predict risk of pancreatic fistula post-gastrectomy for gastric cancer.
文摘BACKGROUND Unraveling the pathogenesis of colorectal cancer(CRC)can aid in developing prevention and treatment strategies.Aurora kinase A(AURKA)is a key participant in mitotic control and interacts with its co-activator,the targeting protein for Xklp2(TPX2)microtubule nucleation factor.AURKA is associated with poor clinical outcomes and high risks of CRC recurrence.AURKA/TPX2 co-overexpression in cancer may contribute to tumorigenesis.Despite its pivotal role in CRC development and progression,the action mechanism of AURKA remains unclear.Further research is needed to explore the complex interplay between AURKA and TPX2 and to develop effective targeted treatments for patients with CRC.AIM To compare effects of AURKA and TPX2 and their combined knockdown on CRC cells.METHODS We evaluated three CRC gene datasets about CRC(GSE32323,GSE25071,and GSE21510).Potential hub genes associated with CRC onset were identified using the Venn,search tool for the retrieval of interacting genes,and KOBAS platforms,with AURKA and TPX2 emerging as significant factors.Subsequently,cell models with knockdown of AURKA,TPX2,or both were constructed using SW480 and LOVO cells.Quantitative real-time polymerase chain reaction,western blotting,cell counting kit-8,cell cloning assays,flow cytometry,and Transwell assays were used.RESULTS Forty-three highly expressed genes and 39 poorly expressed genes overlapped in cancer tissues compared to controls from three datasets.In the protein-protein interaction network of highly expressed genes,AURKA was one of key genes.Its combined score with TPX2 was 0.999,and their co-expression score was 0.846.In CRC cells,knockdown of AURKA,TPX2,or both reduced cell viability and colony number,while blocking G0/G1 phase and enhancing cell apoptosis.Additionally,they were weakened cell proliferation and migration abilities.Furthermore,the expression levels of B-cell lymphoma-2-Associated X,caspase 3,and tumor protein P53,and E-cadherin increased with a decrease in B-cell lymphoma-2,N-cadherin,and vimentin proteins.These effects were amplified when both AURKA and TPX2 were concurrently downregulated.CONCLUSION Combined knockdown of AURKA and TPX2 was effective in suppressing the malignant phenotype in CRC.Coinhibition of gene expression is a potential developmental direction for CRC treatment.
基金Natural Science Foundation of Anhui Province,No.2208085MH216Major Natural Science and Technology Project of Bengbu Medical College,No.2020byfy004Scientific Research Program of Anhui Provincial Health Commission,No.AHWJ2023BAc10028.
文摘BACKGROUND Macrophages are central to the orchestration of immune responses,inflammatory processes,and the pathogenesis of diabetic complications.The dynamic polarization of macrophages into M1 and M2 phenotypes critically modulates inflammation and contributes to the progression of diabetic nephropathy.Sodiumglucose cotransporter 2 inhibitors such as dapagliflozin,which are acclaimed for their efficacy in diabetes management,may influence macrophage polarization,thereby ameliorating diabetic nephropathy.This investigation delves into these mechanistic pathways,aiming to elucidate novel therapeutic strategies for diabetes.AIM To investigate the inhibitory effect of dapagliflozin on macrophage M1 polarization and apoptosis and to explore its mechanism of action.METHODS We established a murine model of type 2 diabetes mellitus and harvested peritoneal macrophages following treatment with dapagliflozin.Concurrently,the human monocyte cell line cells were used for in vitro studies.Macrophage viability was assessed in a cell counting kit 8 assay,whereas apoptosis was evaluated by Annexin V/propidium iodide staining.Protein expression was examined through western blotting,and the expression levels of macrophage M1 surface immunosorbent assay,and quantitative real-time polymerase chain reaction analyses.RESULTS Dapagliflozin attenuated M1 macrophage polarization and mitigated apoptosis in the abdominal macrophages of diabetic mice,evidenced by the downregulation of proapoptotic genes(Caspase 3),inflammatory cytokines[interleukin(IL)-6,tumor necrosis factor-α,and IL-1β],and M1 surface markers(inducible nitric oxide synthase,and cluster of differentiation 86),as well as the upregulation of the antiapoptotic gene BCL2.Moreover,dapagliflozin suppressed the expression of proteins associated with the phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)signaling pathway(PI3K,AKT,phosphorylated protein kinase B).These observations were corroborated in vitro,where we found that the modulatory effects of dapagliflozin were abrogated by 740Y-P,an activator of the PI3K/AKT signaling pathway.CONCLUSION Dapagliflozin attenuates the polarization of macrophages toward the M1 phenotype,thereby mitigating inflammation and promoting macrophage apoptosis.These effects are likely mediated through the inhibition of the PI3K/AKT signaling pathway.
文摘The nucleotide-binding domain,leucine-rich repeat,and pyrin domain-containing protein 3(NLRP3)inflammasome is a critical modulator in inflammatory disease.Activation and mutation of NLRP3 can cause severe inflammation in diseases such as chronic infantile neurologic cutaneous and articular syndrome,Muckle-Wells syndrome,and familial cold autoinflammatory syndrome 1.To date,a great effort has been made to decode the underlying mechanisms of NLRP3 activation.The priming and activation of NLRP3 drive the maturation and release of active interleukin(IL)-18 and IL-1βto cause inflammation and pyroptosis,which can significantly trigger many diseases including inflammatory diseases,immune disorders,metabolic diseases,and neurodegenerative diseases.The investigation of NLRP3 as a therapeutic target for disease treatment is a hot topic in both preclinical studies and clinical trials.Developing potent NLRP3 inhibitors and downstream IL-1 inhibitors attracts wide-spectrum attention in both research and pharmaceutical fields.In this minireview,we first updated the molecular mechanisms involved in NLRP3 inflammasome activation and the associated downstream signaling pathways.We then reviewed the molecular and cellular pathways of NLRP3 in many diseases,including obesity,diabetes,and other metabolic diseases.In addition,we briefly reviewed the roles of NLRP3 in cancer growth and relative immune checkpoint therapy.Finally,clinical trials with treatments targeting NLRP3 and its downstream signaling pathways were summarized.
文摘BACKGROUND Diabetic wound injury is a significant and common complication in individuals with diabetes.N6-methyladenosine(m6A)-related epigenetic regulation is widely involved in the pathogenesis of diabetes complications.However,the function of m6A methyltransferase Wilms tumor 1-associated protein(WTAP)in diabetic wound healing remains elusive.AIM To investigate the potential epigenetic regulatory mechanism of WTAP during diabetic wound healing.METHODS Human umbilical vein endothelial cells(HUVECs)were induced with high glucose(HG)to establish in vitro cell model.Male BALB/c mice were intraperitoneally injected with streptozotocin to mimic diabetes,and full-thickness excision was made to mimic diabetic wound healing.HG-induced HUVECs and mouse models were treated with WTAP siRNAs and DNA methyltransferase 1(DNMT1)overexpression vectors.Cell viability and migration ability were detected by cell counting kit-8 and Transwell assays.In vitro angiogenesis was measured using a tube formation experiment.The images of wounds were captured,and re-epithelialization and collagen deposition of skin tissues were analyzed using hematoxylin and eosin staining and Masson’s trichrome staining.RESULTS The expression of several m6A methyltransferases,including METTL3,METTL14,METTL16,KIAA1429,WTAP,and RBM15,were measured.WTAP exhibited the most significant elevation in HG-induced HUVECs compared with the normal control.WTAP depletion notably restored cell viability and enhanced tube formation ability and migration of HUVECs suppressed by HG.The unclosed wound area of mice was smaller in WTAP knockdowntreated mice than in control mice at nine days post-wounding,along with enhanced re-epithelialization rate and collagen deposition.The m6A levels on DNMT1 mRNA in HUVECs were repressed by WTAP knockdown in HUVECs.The mRNA levels and expression of DNMT1 were inhibited by WTAP depletion in HUVECs.Overexpression of DNMT1 in HUVECs notably reversed the effects of WTAP depletion on HG-induced HUVECs.CONCLUSION WTAP expression is elevated in HG-induced HUVECs and epigenetically regulates the m6A modification of DNMT1 to impair diabetic wound healing.
基金Supported by Natural Science Foundation of Guangdong Province,No.2022A1515012346.
文摘BACKGROUND Diabetic macular edema(DME)is the most common cause of vision loss in people with diabetes.Tight junction disruption of the retinal pigment epithelium(RPE)cells has been reported to induce DME development.SMAD-specific E3 ubiquitin protein ligase(SMURF)1 was associated with the tight junctions of cells.However,the mechanism of SMURF1 in the DME process remains unclear.AIM To investigate the role of SMURF1 in RPE cell tight junction during DME.METHODS ARPE-19 cells treated with high glucose(HG)and desferrioxamine mesylate(DFX)for establishment of the DME cell model.DME mice models were constructed by streptozotocin induction.The trans-epithelial electrical resistance and permeability of RPE cells were analyzed.The expressions of tight junction-related and autophagy-related proteins were determined.The interaction between insulin like growth factor 2 mRNA binding protein 2(IGF2BP2)and SMURF1 mRNA was verified by RNA immunoprecipitation(RIP).SMURF1 N6-methyladenosine(m6A)level was detected by methylated RIP.RESULTS SMURF1 and vascular endothelial growth factor(VEGF)were upregulated in DME.SMURF1 knockdown reduced HG/DFX-induced autophagy,which protected RPE cell tight junctions and ameliorated retinal damage in DME mice.SMURF1 activated the Wnt/β-catenin-VEGF signaling pathway by promoting WNT inhibitory factor(WIF)1 ubiquitination and degradation.IGF2BP2 upregulated SMURF1 expression in an m6A modification-dependent manner.CONCLUSION M6A-modified SMURF1 promoted WIF1 ubiquitination and degradation,which activated autophagy to inhibit RPE cell tight junctions,ultimately promoting DME progression.
基金supported by the National Natural Science Foundation of China (31901462 and 31671613).
文摘Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s organs.Therefore,increasing the Bt protein concentration at the boll stage,especially in bolls,has become the main goal for increasing insect resistance in cotton.In this study,two protein degradation inhibitors(ethylene diamine tetra acetic acid(EDTA)and leupeptin)were sprayed on the bolls,subtending leaves,and whole cotton plants at the peak flowering stage of two Bt cultivars(medium maturation Sikang 1(SK1))and early maturation Zhongmian 425(ZM425)in 2019 and 2020.The Bt protein content and protein degradation metabolism were assessed.The results showed that the Bt protein concentrations were enhanced by 21.3 to 38.8%and 25.0 to 38.6%in the treated bolls of SK1 and ZM425 respectively,while they were decreased in the subtending leaves of these treated bolls.In the treated leaves,the Bt protein concentrations increased by 7.6 to 23.5%and 11.2 to 14.9%in SK1 and ZM425,respectively.The combined application of EDTA and leupeptin to the whole cotton plant increased the Bt protein concentrations in both bolls and subtending leaves.The Bt protein concentrations in bolls were higher,increasing by 22.5 to 31.0%and 19.6 to 32.5%for SK1 and ZM425,respectively.The organs treated with EDTA or/and leupeptin showed reduced free amino acid contents,protease and peptidase activities and significant enhancements in soluble protein contents.These results indicated that inhibiting protein degradation could improve the protein content,thus increasing the Bt protein concentrations in the bolls or/and leaves of cotton plants.Therefore,the increase in the Bt protein concentration without yield reduction suggested that these two protein degradation inhibitors may be applicable for improving insect resistance in cotton production.
基金financially supported by the National Natural Science Foundation of China(U2004104)the Natural Science Foundation of Henan Province(202300410080)+2 种基金the Key Project of Henan Education Committee(21A310005)the Internal Fund of Hebei University of Economics and Business(2020ZD10)the Postgraduate“Talent Program”of Henan University(SYL20060187 and SYL20060189)。
文摘In this study,we investigated the effects of major royal jelly proteins(MRJPs)on the estrogen,gut microbiota,and immunological responses in mice.Mice given 250 or 500 mg/kg,not 125 mg/kg of MRJPs,enhanced the proliferation of splenocytes in response to mitogens.The splenocytes and mesenteric lymphocytes activated by T-cell mitogens(Con A and anti-CD3/CD28 antibodies)released high levels of IL-2 but low levels of IFN-γand IL-17A.The release of IL-4 was unaffected by MRJPs.Additionally,splenocytes and mesenteric lymphocytes activated by LPS were prevented by MRJPs at the same dose as that required for producing IL-1βand IL-6,two pro-inflammatory cytokines.The production of IL-1β,IL-6,and IFN-γwas negatively associated with estrogen levels,which were higher in the MRJP-treated animals than in the control group.Analysis of the gut microbiota revealed that feeding mice 250 mg/kg of MRJPs maintained the stability of the natural intestinal microflora of mice.Additionally,the LEf Se analysis identified biomarkers in the MRJP-treated mice,including Prevotella,Bacillales,Enterobacteriales,Gammaproteobacteria,Candidatus_Arthromitus,and Shigella.Our results showed that MRJPs are important components of royal jelly that modulate host immunity and hormone levels and help maintain gut microbiota stability.
基金in part supported by the National Natural Science Foundation of China,Nos.30560042,81160161,81360198,and 82160255Education Department of Jiangxi Province,Nos.GJJ13198 and GJJ170021+1 种基金Jiangxi Provincial Department of Science and Technology,No.20192BAB205043Health and Family Planning Commission of Jiangxi Province,Nos.20181019 and 202210002(all to RX)。
文摘The onset of amyotrophic lateral sclerosis is usually characterized by focal death of both upper and/or lower motor neurons occurring in the motor cortex,basal ganglia,brainstem,and spinal cord,and commonly involves the muscles of the upper and/or lower extremities,and the muscles of the bulbar and/or respiratory regions.However,as the disease progresses,it affects the adjacent body regions,leading to generalized muscle weakness,occasionally along with memory,cognitive,behavioral,and language impairments;respiratory dysfunction occurs at the final stage of the disease.The disease has a complicated pathophysiology and currently,only riluzole,edaravone,and phenylbutyrate/taurursodiol are licensed to treat amyotrophic lateral sclerosis in many industrialized countries.The TAR DNA-binding protein 43 inclusions are observed in 97%of those diagnosed with amyotrophic lateral sclerosis.This review provides a preliminary overview of the potential effects of TAR DNAbinding protein 43 in the pathogenesis of amyotrophic lateral sclerosis,including the abnormalities in nucleoplasmic transport,RNA function,post-translational modification,liquid-liquid phase separation,stress granules,mitochondrial dysfunction,oxidative stress,axonal transport,protein quality control system,and non-cellular autonomous functions(e.g.,glial cell functions and prion-like propagation).