Photosensors with versatile functionalities have emerged as a cornerstone for breakthroughs in the future optoelectronic systems across a wide range of applications.In particular,emerging photoelectrochemical(PEC)-typ...Photosensors with versatile functionalities have emerged as a cornerstone for breakthroughs in the future optoelectronic systems across a wide range of applications.In particular,emerging photoelectrochemical(PEC)-type devices have recently attracted extensive interest in liquid-based biosensing applications due to their natural electrolyte-assisted operating characteristics.Herein,a PEC-type photosensor was carefully designed and constructed by employing gallium nitride(GaN)p-n homojunction semiconductor nanowires on silicon,with the p-GaN segment strategically doped and then decorated with cobalt-nickel oxide(CoNiO_(x)).Essentially,the p-n homojunction configuration with facile p-doping engineering improves carrier separation efficiency and facilitates carrier transfer to the nanowire surface,while CoNiO_(x)decoration further boosts PEC reaction activity and carrier dynamics at the nanowire/electrolyte interface.Consequently,the constructed photosensor achieves a high responsivity of 247.8 mA W^(-1)while simultaneously exhibiting excellent operating stability.Strikingly,based on the remarkable stability and high responsivity of the device,a glucose sensing system was established with a demonstration of glucose level determination in real human serum.This work offers a feasible and universal approach in the pursuit of high-performance bio-related sensing applications via a rational design of PEC devices in the form of nanostructured architecture with strategic doping engineering.展开更多
Low-temperature processed electron transport layer(ETL)of TiO_(2)that is widely used in planar perovskite solar cells(PSCs)has inherent low carrier mobility,resulting in insufficient photogenerated elec-tron transport...Low-temperature processed electron transport layer(ETL)of TiO_(2)that is widely used in planar perovskite solar cells(PSCs)has inherent low carrier mobility,resulting in insufficient photogenerated elec-tron transport and thus recombination loss at buried interface.Herein,we demonstrate an effective strategy of laser embedding of p-n homojunctions in the TiO_(2)ETL to accelerate electron transport in PSCs,through localized build-in electric fields that enables boosted electron mobility by two orders of magnitude.Such embedding is found significantly helpful for not only the enhanced crystallization quality of TiO_(2)ETL,but the fabrication of perovskite films with larger-grain and the less-trap-states.The embedded p-n homojunction enables also the modulation of interfacial energy level between perovskite layers and ETLs,favoring for the reduced voltage deficit of PSCs.Benefiting from these merits,the formamidinium lead iodide(FAPbI_(3))PSCs employing such ETLs deliver a champion efficiency of 25.50%,along with much-improved device stability under harsh conditions,i.e.,maintain over 95%of their initial efficiency after operation at maximum power point under continuous heat and illumination for 500 h,as well as mixed-cation PSCs with a champion efficiency of 22.02%and over 3000 h of ambient storage under humidity stability of 40%.Present study offers new possibilities of regulating charge transport layers via p-n homojunction embedding for high performance optoelectronics.展开更多
Firefighting protective clothing is a crucial protective equipment for firefighters to minimize skin burn and ensure safety firefighting operation and rescue mission.A recent increasing concern is to develop self-powe...Firefighting protective clothing is a crucial protective equipment for firefighters to minimize skin burn and ensure safety firefighting operation and rescue mission.A recent increasing concern is to develop self-powered fire warning materials that can be incorporated into the firefighting clothing to achieve active fire protection for firefighters before the protective clothing catches fire on fireground.However,it is still a challenge to facilely design and manufacture thermoelectric(TE)textile(TET)-based fire warning electronics with dynamic surface conformability and breathability.Here,we develop an alternate coaxial wet-spinning strategy to continuously produce alternating p/n-type TE aerogel fibers involving n-type Ti_(3)C_(2)T_(x)MXene and p-type MXene/SWCNT-COOH as core materials,and tough aramid nanofiber as protective shell,which simultaneously ensure the flexibility and high-efficiency TE power generation.With such alternating p/n-type TE fibers,TET-based self-powered fire warning sensors with high mechanical stability and wearability are successfully fabricated through stitching the alternating p-n segment TE fibers into aramid fabric.The results indicate that TET-based fire warning electronics containing 50 p-n pairs produce the open-circuit voltage of 7.5 mV with a power density of 119.79 nW cm-2 at a temperature difference of 300℃.The output voltage signal is then calculated as corresponding surface temperature of firefighting clothing based on a linear relationship between TE voltage and temperature.The fire alarm response time and flame-retardant properties are further displayed.Such self-powered fire warning electronics are true textiles that offer breathability and compatibility with body movement,demonstrating their potential application in firefighting clothing.展开更多
Thallium(Tl)compounds,highly toxic to biology,are usually released into flue gas during fossil/minerals combustion,and further distributed in water and soil.In this work,we fundamentally investigated the capture of ga...Thallium(Tl)compounds,highly toxic to biology,are usually released into flue gas during fossil/minerals combustion,and further distributed in water and soil.In this work,we fundamentally investigated the capture of gaseous Tl_(2)O by industrial V2O5-WO3/TiO_(2)catalyst under working condition in Tl-containing flue gas.Experimental and theoretical results indicated that the Tl_(2)O has significant electron-feeding capacity and easily donate electron to unoccupied orbitals of TiO_(2),leading to dismutation of Ti 2p and inartificial formation of p-n junction on TiO_(2)surface,which prompted Tl_(2)O selectively interacted with TiO_(2)in flue gas.Herein,we proposed and verified an effective way to capture gaseous Tl_(2)O,which offered almost the best choice to eliminate Tl emission from flue gas and expanded the function of the TiO_(2)-based catalyst.The formation of p-n junction on commercial V2O5-WO3/TiO_(2)catalyst under working condition was revealed for the first time,which can be a valuable reference for both heterocatalysis and electro/photocatalysis.展开更多
Water splitting is important to the conversion and storage of renewable energy,but slow kinetics of the oxygen evolution reaction(OER)greatly limits its utility.Here,under visible light illumination,the p-n WO_(3)/SnS...Water splitting is important to the conversion and storage of renewable energy,but slow kinetics of the oxygen evolution reaction(OER)greatly limits its utility.Here,under visible light illumination,the p-n WO_(3)/SnSe_(2)(WS)heterojunction significantly activates OER catalysis of CoFe-layered double hydroxide(CF)/carbon nanotubes(CNTs).Specifically,the catalyst achieves an overpotential of 224 mV at 10 mA cm^(-2)and a small Tafel slope of 47 mV dec^(-1),superior to RuO_(2)and most previously reported transition metal-based OER catalysts.The p-n WS heterojunction shows strong light absorption to produce photogenerated carriers.The photogenerated holes are trapped by CF to suppresses the charge recombination and facilitate charge transfer,which accelerates OER kinetics and boost the activity for the OER.This work highlights the possibility of using heterojunctions to activate OER catalysis and advances the design of energy-efficient catalysts for water oxidation systems using solar energy.展开更多
Microcystin-RR(MC-RR),a form of microcystin with two arginine moieties,is a cyanobacterial toxin that has been detected across a wide geographic range.It is a great concern globally because of its potential liver to...Microcystin-RR(MC-RR),a form of microcystin with two arginine moieties,is a cyanobacterial toxin that has been detected across a wide geographic range.It is a great concern globally because of its potential liver toxicity.Herein,the abilities of BiVO4,Ag-BiVO4,Ag2O-BiVO4 and Ag/Ag2O-BiVO4 to photocatalytically degrade MC-RR under visible-light irradiation(λ≥420 nm) were investigated and compared.The possible degradation pathways were explored through analysis of the reaction intermediates by high-performance liquid chromatography-mass spectrometry.The results showed that the presence of Ag^0 enhanced the photocatalytic efficiency of Ag/Ag2O-BiVO4 via a synergetic effect between Ag2O and Ag^0 at the p-n heterojunction.Moreover,the presence of Ag^0 also greatly promoted the adsorption of MC-RR on the photocatalyst surface.Toxicological experiments on mice showed that the toxicity of MC-RR was significantly reduced after photocatalytic degradation.展开更多
基金funded by the National Natural Science Foundation of China(Grant Nos.62322410,52272168,52161145404,81974530,and 82271721)the Fundamental Research Funds for the Central Universities(Grant No.WK3500000009)+1 种基金the International Projects of the Chinese Academy of Science(CAS)under Grant No.211134KYSB20210011Hubei Provincial Science and Technology Innovation Talents and Services Special Program(Grant No.2022EHB039)。
文摘Photosensors with versatile functionalities have emerged as a cornerstone for breakthroughs in the future optoelectronic systems across a wide range of applications.In particular,emerging photoelectrochemical(PEC)-type devices have recently attracted extensive interest in liquid-based biosensing applications due to their natural electrolyte-assisted operating characteristics.Herein,a PEC-type photosensor was carefully designed and constructed by employing gallium nitride(GaN)p-n homojunction semiconductor nanowires on silicon,with the p-GaN segment strategically doped and then decorated with cobalt-nickel oxide(CoNiO_(x)).Essentially,the p-n homojunction configuration with facile p-doping engineering improves carrier separation efficiency and facilitates carrier transfer to the nanowire surface,while CoNiO_(x)decoration further boosts PEC reaction activity and carrier dynamics at the nanowire/electrolyte interface.Consequently,the constructed photosensor achieves a high responsivity of 247.8 mA W^(-1)while simultaneously exhibiting excellent operating stability.Strikingly,based on the remarkable stability and high responsivity of the device,a glucose sensing system was established with a demonstration of glucose level determination in real human serum.This work offers a feasible and universal approach in the pursuit of high-performance bio-related sensing applications via a rational design of PEC devices in the form of nanostructured architecture with strategic doping engineering.
基金financially supported by the project of the National Natural Science Foundation of China(52202115 and 52172101)the China Postdoctoral Science Foundation(2022M722586)+2 种基金the Natural Science Foundation of Chongqing,China(CSTB2022NSCQ-MSX1085)the Shaanxi Science and Technology Innovation Team(2023-CX-TD-44)the Fundamental Research Funds for the Central Universities(3102019JC005 and G2022KY0604)。
文摘Low-temperature processed electron transport layer(ETL)of TiO_(2)that is widely used in planar perovskite solar cells(PSCs)has inherent low carrier mobility,resulting in insufficient photogenerated elec-tron transport and thus recombination loss at buried interface.Herein,we demonstrate an effective strategy of laser embedding of p-n homojunctions in the TiO_(2)ETL to accelerate electron transport in PSCs,through localized build-in electric fields that enables boosted electron mobility by two orders of magnitude.Such embedding is found significantly helpful for not only the enhanced crystallization quality of TiO_(2)ETL,but the fabrication of perovskite films with larger-grain and the less-trap-states.The embedded p-n homojunction enables also the modulation of interfacial energy level between perovskite layers and ETLs,favoring for the reduced voltage deficit of PSCs.Benefiting from these merits,the formamidinium lead iodide(FAPbI_(3))PSCs employing such ETLs deliver a champion efficiency of 25.50%,along with much-improved device stability under harsh conditions,i.e.,maintain over 95%of their initial efficiency after operation at maximum power point under continuous heat and illumination for 500 h,as well as mixed-cation PSCs with a champion efficiency of 22.02%and over 3000 h of ambient storage under humidity stability of 40%.Present study offers new possibilities of regulating charge transport layers via p-n homojunction embedding for high performance optoelectronics.
基金This work was financially supported by the Opening Project of National Local Joint Laboratory for Advanced Textile Processing and Clean Production(FX2022006)Guiding Project of Natural Science Foundation of Hubei province(2022CFC072)+2 种基金Guiding Project of Scientific Research Plan of Education Department of Hubei Province(B2022081)Shenghong Key Scientific Research Project of Emergency Support and Public Safety Fiber Materials and Products(2022-rw0101)Science and Technology Guidance Program of China National Textile and Apparel Council(2022002).
文摘Firefighting protective clothing is a crucial protective equipment for firefighters to minimize skin burn and ensure safety firefighting operation and rescue mission.A recent increasing concern is to develop self-powered fire warning materials that can be incorporated into the firefighting clothing to achieve active fire protection for firefighters before the protective clothing catches fire on fireground.However,it is still a challenge to facilely design and manufacture thermoelectric(TE)textile(TET)-based fire warning electronics with dynamic surface conformability and breathability.Here,we develop an alternate coaxial wet-spinning strategy to continuously produce alternating p/n-type TE aerogel fibers involving n-type Ti_(3)C_(2)T_(x)MXene and p-type MXene/SWCNT-COOH as core materials,and tough aramid nanofiber as protective shell,which simultaneously ensure the flexibility and high-efficiency TE power generation.With such alternating p/n-type TE fibers,TET-based self-powered fire warning sensors with high mechanical stability and wearability are successfully fabricated through stitching the alternating p-n segment TE fibers into aramid fabric.The results indicate that TET-based fire warning electronics containing 50 p-n pairs produce the open-circuit voltage of 7.5 mV with a power density of 119.79 nW cm-2 at a temperature difference of 300℃.The output voltage signal is then calculated as corresponding surface temperature of firefighting clothing based on a linear relationship between TE voltage and temperature.The fire alarm response time and flame-retardant properties are further displayed.Such self-powered fire warning electronics are true textiles that offer breathability and compatibility with body movement,demonstrating their potential application in firefighting clothing.
基金financially supported by the National Natural Science Foundation of China(21936005,52070114 and 21876093)Tsinghua-Foshan Innovation Special Fund(TFISF).
文摘Thallium(Tl)compounds,highly toxic to biology,are usually released into flue gas during fossil/minerals combustion,and further distributed in water and soil.In this work,we fundamentally investigated the capture of gaseous Tl_(2)O by industrial V2O5-WO3/TiO_(2)catalyst under working condition in Tl-containing flue gas.Experimental and theoretical results indicated that the Tl_(2)O has significant electron-feeding capacity and easily donate electron to unoccupied orbitals of TiO_(2),leading to dismutation of Ti 2p and inartificial formation of p-n junction on TiO_(2)surface,which prompted Tl_(2)O selectively interacted with TiO_(2)in flue gas.Herein,we proposed and verified an effective way to capture gaseous Tl_(2)O,which offered almost the best choice to eliminate Tl emission from flue gas and expanded the function of the TiO_(2)-based catalyst.The formation of p-n junction on commercial V2O5-WO3/TiO_(2)catalyst under working condition was revealed for the first time,which can be a valuable reference for both heterocatalysis and electro/photocatalysis.
基金the National Natural Science Foundation of China(No.41807213)the Hydrogeo-logical Survey Project of Huangshui River(No.DD20190331).
文摘Water splitting is important to the conversion and storage of renewable energy,but slow kinetics of the oxygen evolution reaction(OER)greatly limits its utility.Here,under visible light illumination,the p-n WO_(3)/SnSe_(2)(WS)heterojunction significantly activates OER catalysis of CoFe-layered double hydroxide(CF)/carbon nanotubes(CNTs).Specifically,the catalyst achieves an overpotential of 224 mV at 10 mA cm^(-2)and a small Tafel slope of 47 mV dec^(-1),superior to RuO_(2)and most previously reported transition metal-based OER catalysts.The p-n WS heterojunction shows strong light absorption to produce photogenerated carriers.The photogenerated holes are trapped by CF to suppresses the charge recombination and facilitate charge transfer,which accelerates OER kinetics and boost the activity for the OER.This work highlights the possibility of using heterojunctions to activate OER catalysis and advances the design of energy-efficient catalysts for water oxidation systems using solar energy.
基金supported by the National Natural Science Foundation of China (21677086, 21407092, 21377067, 21577078)the Natural Science Foundation for Innovation Group of Hubei Province, China (2015CFA021)~~
文摘Microcystin-RR(MC-RR),a form of microcystin with two arginine moieties,is a cyanobacterial toxin that has been detected across a wide geographic range.It is a great concern globally because of its potential liver toxicity.Herein,the abilities of BiVO4,Ag-BiVO4,Ag2O-BiVO4 and Ag/Ag2O-BiVO4 to photocatalytically degrade MC-RR under visible-light irradiation(λ≥420 nm) were investigated and compared.The possible degradation pathways were explored through analysis of the reaction intermediates by high-performance liquid chromatography-mass spectrometry.The results showed that the presence of Ag^0 enhanced the photocatalytic efficiency of Ag/Ag2O-BiVO4 via a synergetic effect between Ag2O and Ag^0 at the p-n heterojunction.Moreover,the presence of Ag^0 also greatly promoted the adsorption of MC-RR on the photocatalyst surface.Toxicological experiments on mice showed that the toxicity of MC-RR was significantly reduced after photocatalytic degradation.