Based on starch and series of alkyl benzene sulfonic acid as the materials, a novel carbon-based solid acid catalyst is synthesized using hydrothermal method. This catalyst exhibits much higher catalytic activity in t...Based on starch and series of alkyl benzene sulfonic acid as the materials, a novel carbon-based solid acid catalyst is synthesized using hydrothermal method. This catalyst exhibits much higher catalytic activity in the reaction of esterification of Mono-fatty alcohol polyoxyethylene maleate esters with 1,4-butanediol. The structure of carbon-based solid acid catalyst was charactered by IR and XRD, characterizations showed that this catalyst exhibited high –SO3H loading. Reusability of the carbon-based solid acid catalyst for esterification showed that after recycling five times the activity remained unchanged.展开更多
The effect of additive—dodecylbenzene sulfonic acid(DBSA)—on residue hydrotreating was studied in the au toclave. The results showed that the additive improved stabilization of the colloid system of residue, which c...The effect of additive—dodecylbenzene sulfonic acid(DBSA)—on residue hydrotreating was studied in the au toclave. The results showed that the additive improved stabilization of the colloid system of residue, which could delay th aggregation and coke formation from asphaltenes on the catalyst, and make heavy components transformed into light oi The residue conversion in the presence of this additive increased by 1.94%, and the yield of light oil increased by 1.53%when the reaction time was 90 min. The surface properties of the catalyst in the presence of this additive were better tha that of the blank test within a very short time(30 min) and deteriorated rapidly after a longer reaction time due to highe conversion and coke deposition. Compared with the blank test, the case using the said additive had shown that the structur of hydrotreated asphaltene units was smaller and the condensation degrees were higher. The test results indicated that th additive could improve the hydrotreating reactivity of residue via permeation and depolymerization, the heavier componen could be transformed into light oil more easily, and the light oil yield and residue conversion were higher for the case usin the said additive in residue hydrotreating process.展开更多
Production of biodiesel by the transesterification process using different modified graphene‐based materials as catalysts was studied.Solid acid graphene‐based samples were prepared by grafting sulfonic or phosphate...Production of biodiesel by the transesterification process using different modified graphene‐based materials as catalysts was studied.Solid acid graphene‐based samples were prepared by grafting sulfonic or phosphate groups on the surface of thermally reduced graphene oxide.The obtained materials were thoroughly characterized using scanning electron microscopy,X‐ray diffraction,thermogravimetric analysis,X‐ray photoelectron spectroscopy,N2 adsorption‐desorption measurements,potentiometric titration,elemental analysis,and Fourier transform infrared spectroscopy.The prepared catalysts were tested in the transesterification of rapeseed oil with methanol at 130°C under pressure,and their activities were compared to the performance of a commercially available heterogeneous acidic catalyst,Amberlyst‐15.All modified samples were active in the transesterification process;however,significant differences were observed in the yield of biodiesel,depending on the method of catalyst preparation and strength of the acidic sites.The highest yield of fatty acid methyl esters of 70%was obtained for thermally reduced graphene oxide functionalized with 4‐benzenediazonium sulfonate after 6 h of processing,and this result was much higher than that obtained for the commercial catalyst Amberlyst‐15.The results of the reusability test were also promising.展开更多
Sulfonic acid functionalized mesoporous silica based solid acid catalysts with different morphology were designed and fabricated.The synthesized materials were characterized by various physicochemical and spectroscopi...Sulfonic acid functionalized mesoporous silica based solid acid catalysts with different morphology were designed and fabricated.The synthesized materials were characterized by various physicochemical and spectroscopic techniques like scanning electron microscopeenergy dispersive X-ray spectroscopy,Fourier transform infrared spectroscopy,Brunauer–Emmett–Teller surface area,thermogravimetric analysis and n-butylamine acidity.The shape of catalysts particles plays an important role in its activity.The sulfonic acid functionalized mesoporous silica catalysts of spherical shape and the cube shape were assessed for catalytic activity in biodiesel production.The catalytic biodiesel production reaction over the catalysts were studied by esterification of free fatty acid,oleic acid with methanol.The effect of various reaction parameters such as catalyst concentration,acid/alcohol molar ratio,catalyst amount,reaction temperature and reaction time on catalytic activity were investigated to optimize the conditions for maximum conversion.It was sulfonated cubic shape mesoporous silica which exhibited better activity as compared to the spherical shape silica catalysts.Additionally,the catalyst was regenerated and reused up to three cycles without any significant loss in activity.The present catalysts exhibit superior performance in biodiesel production and it can be used for the several biodiesel feedstock’s that are rich in free fatty acids.展开更多
Several imidazolium ionic liquid(IL)-supported sulfonic acids with different anions,[C_3SO_3Hmim]HSO_4,[C_3SO_3Hmim]BF_4, [C_3SO_3 Hmim]PF_6,and[C_3SO_3Hmim]CF_3SO_3,were synthesized and applied as catalysts for est...Several imidazolium ionic liquid(IL)-supported sulfonic acids with different anions,[C_3SO_3Hmim]HSO_4,[C_3SO_3Hmim]BF_4, [C_3SO_3 Hmim]PF_6,and[C_3SO_3Hmim]CF_3SO_3,were synthesized and applied as catalysts for esterification reaction of benzoic acid. The experimental results indicate that imidazolium IL-supported sulfonic acid containing anion of HSO_4^- shows the best catalytic activity.Only when less[C_3SO_3Hmim]HSO_4(0.3 equiv.) applied,was the product obtained with high yield of 97%.Furthermore, the produced esters could be separated by decantation,and the catalyst could be reused after the removal of water.展开更多
Green and recyclable solid acid catalysts are in urgent demand as a substitute for conventional liquid mineral acids.In this work,a series of novel sulfonic acid-functionalized core-shell Fe_(3)O_(4)@carbon microspher...Green and recyclable solid acid catalysts are in urgent demand as a substitute for conventional liquid mineral acids.In this work,a series of novel sulfonic acid-functionalized core-shell Fe_(3)O_(4)@carbon microspheres(Fe_(3)O_(4)@C-SO_(3)H)have been designed and synthesized as an efficient and recyclable heterogeneous acid catalyst.For the synthesis,core-shell Fe_(3)O_(4)@RF(resorcinol-formaldehyde)microspheres with tunable shell thickness were achieved by interfacial polymerization on magnetic Fe_(3)O_(4)microspheres.After high-temperature carbonization,the microspheres were eventually treated by surface sulfonation,re sulting in Fe_(3)O_(4)@C-x-SO_(3)H(x stands for carbonization temperature)microspheres with abundant surface SO_(3)H groups.The obtained microspheres possess uniform core-shell structure,partially-graphitized carbon skeletons,superparamagnetic property,high magnetization saturation value of 10.6 emu/g,and rich SO_(3)H groups.The surface acid amounts can be adju sted in the range of 0.59-1.04 mmol/g via sulfonation treatment of carbon shells with different graphitization degrees.The magnetic Fe_(3)O_(4)@C-x-SO_(3)H microspheres were utilized as a solid acid catalyst for the acetalization reaction between benzaldehyde and ethylene glycol,demonstrating high selectivity(97%)to benzaldehyde ethylene glycol acetal.More importantly,by applying an external magnetic field,the catalysts can be easily separated from the heterogeneous reaction solutions,which later show well preserved catalytic activity even after 9 cycles,revealing good recyclability and high stability.展开更多
A mild, simple and efficient procedure for the preparation of 3,4-dihydropyrimidin-2(1H)-ones and -thiones is described using N-sulfonic acid poly(4-vinylpyridinium) chloride (NSPVPC) as a heterogeneous and effi...A mild, simple and efficient procedure for the preparation of 3,4-dihydropyrimidin-2(1H)-ones and -thiones is described using N-sulfonic acid poly(4-vinylpyridinium) chloride (NSPVPC) as a heterogeneous and efficient catalyst under solvent-free conditions. Simple methodologies, easy work-up procedure, easy preparation of the catalyst, excellent yields and very short reaction times are among the other advantages of this work. Further, the catalyst can be reused and recovered for several times without significant decrease in its activity.展开更多
文摘Based on starch and series of alkyl benzene sulfonic acid as the materials, a novel carbon-based solid acid catalyst is synthesized using hydrothermal method. This catalyst exhibits much higher catalytic activity in the reaction of esterification of Mono-fatty alcohol polyoxyethylene maleate esters with 1,4-butanediol. The structure of carbon-based solid acid catalyst was charactered by IR and XRD, characterizations showed that this catalyst exhibited high –SO3H loading. Reusability of the carbon-based solid acid catalyst for esterification showed that after recycling five times the activity remained unchanged.
基金the financial support provided by the National Natural Science Foundation of China (Grant No. 21376266)the Petro China Innovation Foundation (Grant No. 2011D-5006-0405)the Fundamental Research Funds for the Central Universities (Grant No. 27R1104049A)
文摘The effect of additive—dodecylbenzene sulfonic acid(DBSA)—on residue hydrotreating was studied in the au toclave. The results showed that the additive improved stabilization of the colloid system of residue, which could delay th aggregation and coke formation from asphaltenes on the catalyst, and make heavy components transformed into light oi The residue conversion in the presence of this additive increased by 1.94%, and the yield of light oil increased by 1.53%when the reaction time was 90 min. The surface properties of the catalyst in the presence of this additive were better tha that of the blank test within a very short time(30 min) and deteriorated rapidly after a longer reaction time due to highe conversion and coke deposition. Compared with the blank test, the case using the said additive had shown that the structur of hydrotreated asphaltene units was smaller and the condensation degrees were higher. The test results indicated that th additive could improve the hydrotreating reactivity of residue via permeation and depolymerization, the heavier componen could be transformed into light oil more easily, and the light oil yield and residue conversion were higher for the case usin the said additive in residue hydrotreating process.
文摘Production of biodiesel by the transesterification process using different modified graphene‐based materials as catalysts was studied.Solid acid graphene‐based samples were prepared by grafting sulfonic or phosphate groups on the surface of thermally reduced graphene oxide.The obtained materials were thoroughly characterized using scanning electron microscopy,X‐ray diffraction,thermogravimetric analysis,X‐ray photoelectron spectroscopy,N2 adsorption‐desorption measurements,potentiometric titration,elemental analysis,and Fourier transform infrared spectroscopy.The prepared catalysts were tested in the transesterification of rapeseed oil with methanol at 130°C under pressure,and their activities were compared to the performance of a commercially available heterogeneous acidic catalyst,Amberlyst‐15.All modified samples were active in the transesterification process;however,significant differences were observed in the yield of biodiesel,depending on the method of catalyst preparation and strength of the acidic sites.The highest yield of fatty acid methyl esters of 70%was obtained for thermally reduced graphene oxide functionalized with 4‐benzenediazonium sulfonate after 6 h of processing,and this result was much higher than that obtained for the commercial catalyst Amberlyst‐15.The results of the reusability test were also promising.
基金Varsha P.Brahmkhatri also acknowledges TARESERB.TAR/2018/000547.Nanomission project“SR/NM/NS-20/2014”CNMS,JAIN deemed to be University is acknowledged for SEM facility。
文摘Sulfonic acid functionalized mesoporous silica based solid acid catalysts with different morphology were designed and fabricated.The synthesized materials were characterized by various physicochemical and spectroscopic techniques like scanning electron microscopeenergy dispersive X-ray spectroscopy,Fourier transform infrared spectroscopy,Brunauer–Emmett–Teller surface area,thermogravimetric analysis and n-butylamine acidity.The shape of catalysts particles plays an important role in its activity.The sulfonic acid functionalized mesoporous silica catalysts of spherical shape and the cube shape were assessed for catalytic activity in biodiesel production.The catalytic biodiesel production reaction over the catalysts were studied by esterification of free fatty acid,oleic acid with methanol.The effect of various reaction parameters such as catalyst concentration,acid/alcohol molar ratio,catalyst amount,reaction temperature and reaction time on catalytic activity were investigated to optimize the conditions for maximum conversion.It was sulfonated cubic shape mesoporous silica which exhibited better activity as compared to the spherical shape silica catalysts.Additionally,the catalyst was regenerated and reused up to three cycles without any significant loss in activity.The present catalysts exhibit superior performance in biodiesel production and it can be used for the several biodiesel feedstock’s that are rich in free fatty acids.
基金the National Natural Science Foundation of China(No.20676033)China Postdoctoral Science Foundation(No.20070410169)Shanghai Leading Academic Discipline Project(No.B507) for financial support
文摘Several imidazolium ionic liquid(IL)-supported sulfonic acids with different anions,[C_3SO_3Hmim]HSO_4,[C_3SO_3Hmim]BF_4, [C_3SO_3 Hmim]PF_6,and[C_3SO_3Hmim]CF_3SO_3,were synthesized and applied as catalysts for esterification reaction of benzoic acid. The experimental results indicate that imidazolium IL-supported sulfonic acid containing anion of HSO_4^- shows the best catalytic activity.Only when less[C_3SO_3Hmim]HSO_4(0.3 equiv.) applied,was the product obtained with high yield of 97%.Furthermore, the produced esters could be separated by decantation,and the catalyst could be reused after the removal of water.
基金financially supported by the National Natural Science Foundation of China(Nos.21875044,52073064,22005058 and 22005057)National Key R&D Program of China(No.2020YFB2008600)+3 种基金Key Basic Research Program of Science and Technology Commission of Shanghai Municipality(No.20JC1415300)Program of Shanghai Academic Research Leader(No.19XD1420300)China Post-doctoral Science Foundation(Nos.2020M670973,BX20200085)the State Key Laboratory of Transducer Technology of China(No.SKT1904)。
文摘Green and recyclable solid acid catalysts are in urgent demand as a substitute for conventional liquid mineral acids.In this work,a series of novel sulfonic acid-functionalized core-shell Fe_(3)O_(4)@carbon microspheres(Fe_(3)O_(4)@C-SO_(3)H)have been designed and synthesized as an efficient and recyclable heterogeneous acid catalyst.For the synthesis,core-shell Fe_(3)O_(4)@RF(resorcinol-formaldehyde)microspheres with tunable shell thickness were achieved by interfacial polymerization on magnetic Fe_(3)O_(4)microspheres.After high-temperature carbonization,the microspheres were eventually treated by surface sulfonation,re sulting in Fe_(3)O_(4)@C-x-SO_(3)H(x stands for carbonization temperature)microspheres with abundant surface SO_(3)H groups.The obtained microspheres possess uniform core-shell structure,partially-graphitized carbon skeletons,superparamagnetic property,high magnetization saturation value of 10.6 emu/g,and rich SO_(3)H groups.The surface acid amounts can be adju sted in the range of 0.59-1.04 mmol/g via sulfonation treatment of carbon shells with different graphitization degrees.The magnetic Fe_(3)O_(4)@C-x-SO_(3)H microspheres were utilized as a solid acid catalyst for the acetalization reaction between benzaldehyde and ethylene glycol,demonstrating high selectivity(97%)to benzaldehyde ethylene glycol acetal.More importantly,by applying an external magnetic field,the catalysts can be easily separated from the heterogeneous reaction solutions,which later show well preserved catalytic activity even after 9 cycles,revealing good recyclability and high stability.
基金the University of Guilan Research Council for the partial support of this work
文摘A mild, simple and efficient procedure for the preparation of 3,4-dihydropyrimidin-2(1H)-ones and -thiones is described using N-sulfonic acid poly(4-vinylpyridinium) chloride (NSPVPC) as a heterogeneous and efficient catalyst under solvent-free conditions. Simple methodologies, easy work-up procedure, easy preparation of the catalyst, excellent yields and very short reaction times are among the other advantages of this work. Further, the catalyst can be reused and recovered for several times without significant decrease in its activity.