Some transition metal chelates of two ligands L1 and L2 were prepared and characterized by elemental analysis. The IR and 1H NMR spectra of several chelates of two ligands L1 and L2 showed the involvement of the azo g...Some transition metal chelates of two ligands L1 and L2 were prepared and characterized by elemental analysis. The IR and 1H NMR spectra of several chelates of two ligands L1 and L2 showed the involvement of the azo group in chelation with the transition metaI ions, in most of the studied chelates, and that the two ligands L1 and L2 showed the involvement of the azo group in chelation with the transition metal ions, in most of the studied chelates, and that the two ligands L1 and L2 were coordinated either in the enol or the keto form. IR spetra also showed that Fe(III)-, Ni(II)-, Mn(II)-, VO(II)-L1 and Cu(II)-L2 chelates behaved in a bidentate manner, in contrast with the two (1:1) M:L cobalt chelates with the two ligands are tridentate.TG analysis indicated the presence of three to twelve water molecules of hydration eliminated on heating up to 150℃ and one or two coordinated water molecules removed at 150~180℃.The octahedral structure is proposed fOr all the chelates, except Cu(II)-L2 and Ni(II)-L1 chelates which have square planar geometry, based on their electronic spectra展开更多
Despite the advent of biological products, such as anti-tumor necrosis factor-α monoclonal antibodies (infliximab and adalimumab), for treatment of moderate to severe cases of inflammatory bowel disease (I...Despite the advent of biological products, such as anti-tumor necrosis factor-α monoclonal antibodies (infliximab and adalimumab), for treatment of moderate to severe cases of inflammatory bowel disease (IBD), most patients depend upon aminosalicylates as the conventional treatment option. In recent years, the increased knowledge of complex pathophysiological processes underlying IBD has resulted in development of a number of newer pharmaceutical agents like low-molecular-weight heparin, omega-3 fatty acids, probiotics and innovative formulations such as high-dose, once-daily multi-matrix mesalamine, which are designed to minimize the inflammatory process through inhibition of different targets. Optimization of delivery of existing drugs to the colon using the prodrug approach is another attractive alternative that has been utilized and commercialized for 5-aminosalicylic acid (ASA) in the form of sulfasalazine, balsalazide, olsalazine and ipsalazine, but rarely for its positional isomer 4-ASA - a well-established antitubercular drug that is twice as potent as 5-ASA against IBD, and more specifically, ulcerative colitis. The present review focuses on the complete profile of 4-ASA and its advantages over 5-ASA and colon-targeting prodrugs reported so far for the management of IBD. The review also emphasizes the need for reappraisal of this promising but unexplored entity as a potential treatment option for IBD.展开更多
Recently, functional molecules such as Polydopamine(PDA), Hyaluronic Acid(HA) and heparin have been widely studied in the field of surface modification of magnesium(Mg) alloy stents for better degradation behavior and...Recently, functional molecules such as Polydopamine(PDA), Hyaluronic Acid(HA) and heparin have been widely studied in the field of surface modification of magnesium(Mg) alloy stents for better degradation behavior and biocompatibility, but their further application is limited by undesirable anticoagulant function, uncontrollable degradation and easy bleeding, respectively.Regarding to this consideration, a magnesium Fluoride/Polydopamine/Sulphonated hyaluronic acid(Mg F2/PDA/S-HA) composite coating was successfully prepared by applying S-HA with sulfur content of 9.71 wt% on the surface of ZE21B alloy in this study. The results showed that the composite coating with a unique mesh structure not only inherited the anticoagulant effect of sulfonic acid group and the excellent cyto-compatibility of S-HA with high sulfur content, but also significantly improved the corrosion performance of ZE21B alloy.These results indicate a great application potential of the composite coating in the field of cardiovascular biomaterials.展开更多
文摘Some transition metal chelates of two ligands L1 and L2 were prepared and characterized by elemental analysis. The IR and 1H NMR spectra of several chelates of two ligands L1 and L2 showed the involvement of the azo group in chelation with the transition metaI ions, in most of the studied chelates, and that the two ligands L1 and L2 showed the involvement of the azo group in chelation with the transition metal ions, in most of the studied chelates, and that the two ligands L1 and L2 were coordinated either in the enol or the keto form. IR spetra also showed that Fe(III)-, Ni(II)-, Mn(II)-, VO(II)-L1 and Cu(II)-L2 chelates behaved in a bidentate manner, in contrast with the two (1:1) M:L cobalt chelates with the two ligands are tridentate.TG analysis indicated the presence of three to twelve water molecules of hydration eliminated on heating up to 150℃ and one or two coordinated water molecules removed at 150~180℃.The octahedral structure is proposed fOr all the chelates, except Cu(II)-L2 and Ni(II)-L1 chelates which have square planar geometry, based on their electronic spectra
文摘Despite the advent of biological products, such as anti-tumor necrosis factor-α monoclonal antibodies (infliximab and adalimumab), for treatment of moderate to severe cases of inflammatory bowel disease (IBD), most patients depend upon aminosalicylates as the conventional treatment option. In recent years, the increased knowledge of complex pathophysiological processes underlying IBD has resulted in development of a number of newer pharmaceutical agents like low-molecular-weight heparin, omega-3 fatty acids, probiotics and innovative formulations such as high-dose, once-daily multi-matrix mesalamine, which are designed to minimize the inflammatory process through inhibition of different targets. Optimization of delivery of existing drugs to the colon using the prodrug approach is another attractive alternative that has been utilized and commercialized for 5-aminosalicylic acid (ASA) in the form of sulfasalazine, balsalazide, olsalazine and ipsalazine, but rarely for its positional isomer 4-ASA - a well-established antitubercular drug that is twice as potent as 5-ASA against IBD, and more specifically, ulcerative colitis. The present review focuses on the complete profile of 4-ASA and its advantages over 5-ASA and colon-targeting prodrugs reported so far for the management of IBD. The review also emphasizes the need for reappraisal of this promising but unexplored entity as a potential treatment option for IBD.
基金funded by the Key Projects of the Joint Fund of the National Natural Science Foundation of China(U1804251)National Key Research and Development Program of China (2017YFB0702500, 2018YFC1106703, and 2016YFC1102403)Top Doctor Program of Zhengzhou University (grant number 32210475)。
文摘Recently, functional molecules such as Polydopamine(PDA), Hyaluronic Acid(HA) and heparin have been widely studied in the field of surface modification of magnesium(Mg) alloy stents for better degradation behavior and biocompatibility, but their further application is limited by undesirable anticoagulant function, uncontrollable degradation and easy bleeding, respectively.Regarding to this consideration, a magnesium Fluoride/Polydopamine/Sulphonated hyaluronic acid(Mg F2/PDA/S-HA) composite coating was successfully prepared by applying S-HA with sulfur content of 9.71 wt% on the surface of ZE21B alloy in this study. The results showed that the composite coating with a unique mesh structure not only inherited the anticoagulant effect of sulfonic acid group and the excellent cyto-compatibility of S-HA with high sulfur content, but also significantly improved the corrosion performance of ZE21B alloy.These results indicate a great application potential of the composite coating in the field of cardiovascular biomaterials.