Control of pH neutralization processes is challenging in the chemical process industry because of their inherent strong nonlinearity. In this paper, the model algorithmic control (MAC) strategy is extended to nonlinea...Control of pH neutralization processes is challenging in the chemical process industry because of their inherent strong nonlinearity. In this paper, the model algorithmic control (MAC) strategy is extended to nonlinear processes using Hammerstein model that consists of a static nonlinear polynomial function followed in series by a linear impulse response dynamic element. A new nonlinear Hammerstein MAC algorithm (named NLH-MAC) is presented in detail. The simulation control results of a pH neutralization process show that NLH-MAC gives better control performance than linear MAC and the commonly used industrial nonlinear propotional plus integral plus derivative (PID) controller. Further simulation experiment demonstrates that NLH-MAC not only gives good control response, but also possesses good stability and robustness even with large modeling errors.展开更多
This paper deals with Wiener model based predictive control of a pH neutralization process.The dynamic linear block of the Wiener model is parameterized using Laguerre filters while the nonlinear block is constructed ...This paper deals with Wiener model based predictive control of a pH neutralization process.The dynamic linear block of the Wiener model is parameterized using Laguerre filters while the nonlinear block is constructed using least squares support vector machines (LSSVM).Input-output data from the first principle model of the pH neutralization process are used for the Wiener model identification.Simulation results show that the proposed Wiener model has higher prediction accuracy than Laguerre-support vector regression (SVR) Wiener models,Laguerre-polynomial Wiener models,and linear Laguerre models.The identified Wiener model is used here for nonlinear model predictive control (NMPC) of the pH neutralization process.The set-point tracking performance of the proposed NMPC is compared with those of the Laguerre-SVR Wiener model based NMPC,Laguerre-polynomial Wiener model based NMPC,and linear model predictive control (LMPC).Validation results show that the proposed NMPC outperforms the other three controllers.展开更多
Bauxite residue deposit area(BRDA)is a typical abandoned mining wasteland representing extreme hostile environment with increased alkalinity.Microbially-driven neutralization of bauxite residue,based on the microbial ...Bauxite residue deposit area(BRDA)is a typical abandoned mining wasteland representing extreme hostile environment with increased alkalinity.Microbially-driven neutralization of bauxite residue,based on the microbial acid producing metabolisms,is a novel strategy for achieving rapid pH neutralization and thus improving its environmental outcomes.The hypothesis was that these extreme conditions promote microbial communities which are capable of novel ecologically relevant functions.Several alkaliphilic acid producing bacteria were isolated in this study.One strain was selected for its superior growth pattern and acid metabolism(termed EEEL02).Based on the phylogenetic analysis,this strain was identified as Bacillus thuringiensis.The optimized fermentation conditions were as follows:pH 10;NaCl concentration 5%;temperature 25℃;EEEL02 preferred glucose and peptone as carbon and nitrogen sources,respectively.Based on optimal fermentation conditions,EEEL02 induced a significant pH reduction from 10.26 to 5.62 in 5-day incubation test.Acetic acid,propionic acid and CO2(g)were the major acid metabolites of fermentation,suggesting that the pH reduction in bauxite residue may be caused by acid neutralization derived from microbial metabolism.This finding provided the basis of a novel strategy for achieving rapid pH neutralization of bauxite residue.展开更多
Cobalt-based phosphate/phosphonates are a class of promising water oxidation catalysts at neutralpH.Herein,we reported a facile hydrothermal synthesis of various nanostructured cobalt phe-nylphosphonates.It is found t...Cobalt-based phosphate/phosphonates are a class of promising water oxidation catalysts at neutralpH.Herein,we reported a facile hydrothermal synthesis of various nanostructured cobalt phe-nylphosphonates.It is found that the number of hydroxyl group of structure-directing reagent iscrucial for the construction of 3D hierarchical structures including hierarchical nanosheet flow-er-like assemblies and nanothorn microsphere.These samples were characterized by scanningelectron microscopy,transmission electron microscopy,X-ray diffraction,infrared,and X-ray pho-toelectron spectroscopy techniques.They can act as highly efficient electrocatalysts for the oxygenevolution reaction at neutral pH.Among these,hierarchical cobalt phenylphosphonate nanothornflowers present excellent performance,affording a current density of 1 mA cm^-2 required a smalloverpotential of 393 mV.This work offers a new clue to develop high-performance metal phospho-nate/phosphate catalysts toward electrochemical water oxidation.展开更多
The development of neutral pH polymer electrolytes has enabled high-performance solid-state,thin,and flexible electrochemical capacitors(ECs)to provide power for future consumer electronics and Internet-of-Thing devic...The development of neutral pH polymer electrolytes has enabled high-performance solid-state,thin,and flexible electrochemical capacitors(ECs)to provide power for future consumer electronics and Internet-of-Thing devices.Notwithstanding their promising prospect,there is still some lack of understandings or disconnections from fundamental science to practical applications of these electrolytes.In this review,we provide an overview of stateof-the-art studies on ECs with neutral pH electrolytes in both liquid and solid configurations.Starting from the fundamental studies on the voltage window and ion conduction of salt species in liquid solution to polymer electrolytes,key considerations in developing neutral pH polymer electrolytes are discussed.The performance of the polymer electrolytes along with their enabled solid symmetric and asymmetric EC devices,as well as some enhanced functionalities are presented.The future directions for research on neutral pH polymer electrolytes are proposed,expected to provide reference for further enriching the fundamental knowledge and improving the device performances.展开更多
A sparse approximation algorithm based on projection is presented in this paper in order to overcome the limitation of the non-sparsity of least squares support vector machines (LS-SVM). The new inputs are projected...A sparse approximation algorithm based on projection is presented in this paper in order to overcome the limitation of the non-sparsity of least squares support vector machines (LS-SVM). The new inputs are projected into the subspace spanned by previous basis vectors (BV) and those inputs whose squared distance from the subspace is higher than a threshold are added in the BV set, while others are rejected. This consequently results in the sparse approximation. In addition, a recursive approach to deleting an exiting vector in the BV set is proposed. Then the online LS-SVM, sparse approximation and BV removal are combined to produce the sparse online LS-SVM algorithm that can control the size of memory irrespective of the processed data size. The suggested algorithm is applied in the online modeling of a pH neutralizing process and the isomerization plant of a refinery, respectively. The detailed comparison of computing time and precision is also given between the suggested algorithm and the nonsparse one. The results show that the proposed algorithm greatly improves the sparsity just with little cost of precision.展开更多
Development of earth-abundant electrocatalysts, particularly for high-efficiency hydrogen evolution reaction (HER) under benign conditions, is highly desired, but still remains a serious challenge. Herein, we report...Development of earth-abundant electrocatalysts, particularly for high-efficiency hydrogen evolution reaction (HER) under benign conditions, is highly desired, but still remains a serious challenge. Herein, we report a high-performance amorphous CoMoS4 nanosheet array on carbon cloth (CoMoS4 NS/CC), prepared by hydrothermal treatment of a Co(OH)F nanosheet array on a carbon cloth (Co(OH)F NS/CC) in (NH4)2MoS4 solution. As a three-dimensional HER electrode, CoMoS4 NS/CC exhibits remarkable activity in 1.0 M phosphate buffer saline (pH 7), only requiring an overpotential of 183 mV to drive a geometrical current density of 10 mA·cm-2. This overpotential is 140 mV lower than that for Co(OH)F NS/CC. Notably, this electrode also shows outstanding electrochemical durability and nearly 100% Faradaic efficiency. Density functional theory calculations suggest that CoMoS4 has a more favorable hydrogen adsorption free energy than Co(OH)F.展开更多
文摘Control of pH neutralization processes is challenging in the chemical process industry because of their inherent strong nonlinearity. In this paper, the model algorithmic control (MAC) strategy is extended to nonlinear processes using Hammerstein model that consists of a static nonlinear polynomial function followed in series by a linear impulse response dynamic element. A new nonlinear Hammerstein MAC algorithm (named NLH-MAC) is presented in detail. The simulation control results of a pH neutralization process show that NLH-MAC gives better control performance than linear MAC and the commonly used industrial nonlinear propotional plus integral plus derivative (PID) controller. Further simulation experiment demonstrates that NLH-MAC not only gives good control response, but also possesses good stability and robustness even with large modeling errors.
基金Project (No.60574022) supported by the National Natural Science Foundation of China
文摘This paper deals with Wiener model based predictive control of a pH neutralization process.The dynamic linear block of the Wiener model is parameterized using Laguerre filters while the nonlinear block is constructed using least squares support vector machines (LSSVM).Input-output data from the first principle model of the pH neutralization process are used for the Wiener model identification.Simulation results show that the proposed Wiener model has higher prediction accuracy than Laguerre-support vector regression (SVR) Wiener models,Laguerre-polynomial Wiener models,and linear Laguerre models.The identified Wiener model is used here for nonlinear model predictive control (NMPC) of the pH neutralization process.The set-point tracking performance of the proposed NMPC is compared with those of the Laguerre-SVR Wiener model based NMPC,Laguerre-polynomial Wiener model based NMPC,and linear model predictive control (LMPC).Validation results show that the proposed NMPC outperforms the other three controllers.
基金Projects(41877511,41842020)supported by the National Natural Science Foundation of ChinaProject(502221703)supported by the Innovative Project of Independent Exploration of Central South University,China
文摘Bauxite residue deposit area(BRDA)is a typical abandoned mining wasteland representing extreme hostile environment with increased alkalinity.Microbially-driven neutralization of bauxite residue,based on the microbial acid producing metabolisms,is a novel strategy for achieving rapid pH neutralization and thus improving its environmental outcomes.The hypothesis was that these extreme conditions promote microbial communities which are capable of novel ecologically relevant functions.Several alkaliphilic acid producing bacteria were isolated in this study.One strain was selected for its superior growth pattern and acid metabolism(termed EEEL02).Based on the phylogenetic analysis,this strain was identified as Bacillus thuringiensis.The optimized fermentation conditions were as follows:pH 10;NaCl concentration 5%;temperature 25℃;EEEL02 preferred glucose and peptone as carbon and nitrogen sources,respectively.Based on optimal fermentation conditions,EEEL02 induced a significant pH reduction from 10.26 to 5.62 in 5-day incubation test.Acetic acid,propionic acid and CO2(g)were the major acid metabolites of fermentation,suggesting that the pH reduction in bauxite residue may be caused by acid neutralization derived from microbial metabolism.This finding provided the basis of a novel strategy for achieving rapid pH neutralization of bauxite residue.
文摘Cobalt-based phosphate/phosphonates are a class of promising water oxidation catalysts at neutralpH.Herein,we reported a facile hydrothermal synthesis of various nanostructured cobalt phe-nylphosphonates.It is found that the number of hydroxyl group of structure-directing reagent iscrucial for the construction of 3D hierarchical structures including hierarchical nanosheet flow-er-like assemblies and nanothorn microsphere.These samples were characterized by scanningelectron microscopy,transmission electron microscopy,X-ray diffraction,infrared,and X-ray pho-toelectron spectroscopy techniques.They can act as highly efficient electrocatalysts for the oxygenevolution reaction at neutral pH.Among these,hierarchical cobalt phenylphosphonate nanothornflowers present excellent performance,affording a current density of 1 mA cm^-2 required a smalloverpotential of 393 mV.This work offers a new clue to develop high-performance metal phospho-nate/phosphate catalysts toward electrochemical water oxidation.
文摘The development of neutral pH polymer electrolytes has enabled high-performance solid-state,thin,and flexible electrochemical capacitors(ECs)to provide power for future consumer electronics and Internet-of-Thing devices.Notwithstanding their promising prospect,there is still some lack of understandings or disconnections from fundamental science to practical applications of these electrolytes.In this review,we provide an overview of stateof-the-art studies on ECs with neutral pH electrolytes in both liquid and solid configurations.Starting from the fundamental studies on the voltage window and ion conduction of salt species in liquid solution to polymer electrolytes,key considerations in developing neutral pH polymer electrolytes are discussed.The performance of the polymer electrolytes along with their enabled solid symmetric and asymmetric EC devices,as well as some enhanced functionalities are presented.The future directions for research on neutral pH polymer electrolytes are proposed,expected to provide reference for further enriching the fundamental knowledge and improving the device performances.
基金supported by the National Creative Research Groups Science Foundation of China (NCRGSFC:60721062)National Basic Research Program of China (973 Program) (No.2007CB714000)
文摘A sparse approximation algorithm based on projection is presented in this paper in order to overcome the limitation of the non-sparsity of least squares support vector machines (LS-SVM). The new inputs are projected into the subspace spanned by previous basis vectors (BV) and those inputs whose squared distance from the subspace is higher than a threshold are added in the BV set, while others are rejected. This consequently results in the sparse approximation. In addition, a recursive approach to deleting an exiting vector in the BV set is proposed. Then the online LS-SVM, sparse approximation and BV removal are combined to produce the sparse online LS-SVM algorithm that can control the size of memory irrespective of the processed data size. The suggested algorithm is applied in the online modeling of a pH neutralizing process and the isomerization plant of a refinery, respectively. The detailed comparison of computing time and precision is also given between the suggested algorithm and the nonsparse one. The results show that the proposed algorithm greatly improves the sparsity just with little cost of precision.
基金This work was supported by the National Key Sdentific Instrument and Equipment Development Project of China (No. 21627809), the National Natural Science Foundation of China (Nos. 21375047, 21377046, 21405059, 21575137, 21575050, and 21601064), Natural Science Foundation of Shandong Province (Nos. ZR2016JL013 and ZR2016BQ10), Graduate Innovation Foundation of University of Jinan (No. YCXB15004), and the Special Foundation for Taishan Scholar Professorship of Shandong Province (No. ts20130937).
文摘Development of earth-abundant electrocatalysts, particularly for high-efficiency hydrogen evolution reaction (HER) under benign conditions, is highly desired, but still remains a serious challenge. Herein, we report a high-performance amorphous CoMoS4 nanosheet array on carbon cloth (CoMoS4 NS/CC), prepared by hydrothermal treatment of a Co(OH)F nanosheet array on a carbon cloth (Co(OH)F NS/CC) in (NH4)2MoS4 solution. As a three-dimensional HER electrode, CoMoS4 NS/CC exhibits remarkable activity in 1.0 M phosphate buffer saline (pH 7), only requiring an overpotential of 183 mV to drive a geometrical current density of 10 mA·cm-2. This overpotential is 140 mV lower than that for Co(OH)F NS/CC. Notably, this electrode also shows outstanding electrochemical durability and nearly 100% Faradaic efficiency. Density functional theory calculations suggest that CoMoS4 has a more favorable hydrogen adsorption free energy than Co(OH)F.