Two kinds of different mechanistic oscillations can be displayed in the H_2O_2-KSCN-CuSO_4-NaOH system. One discovered by this study is the pH oscillation in a continuous flow stirred tank reactor(CSTR) resulting from...Two kinds of different mechanistic oscillations can be displayed in the H_2O_2-KSCN-CuSO_4-NaOH system. One discovered by this study is the pH oscillation in a continuous flow stirred tank reactor(CSTR) resulting from the oxidation of KSCN. The other is the oscillation of H_2O_2 decomposition in both CSTR and batch reactors(reported by Orbáin in 1986). Under appropriate experimental conditions, the system exhibits a birhythmicity in a CSTR. Two different pH oscillations are reported here. The pH oscillations which accompany the decomposition of H_2O_2 exist in the batch reactor and the CSTR at a high flowrate, but the pH oscillations in a CSTR at a low flowrate originates from proton positive and negative feedback in the oxidation of KSCN. The oscillation of non-catalyzed oxidation of KSCN by hydrogen peroxide in a CSTR can be found. Also we have observed whether Cu^(2+) exists or not in the batch system, the pH increases to near neutral ultimately after pH drops twice.展开更多
基金Supported by NSFC(29573109) and Research fund of CUMT.
文摘Two kinds of different mechanistic oscillations can be displayed in the H_2O_2-KSCN-CuSO_4-NaOH system. One discovered by this study is the pH oscillation in a continuous flow stirred tank reactor(CSTR) resulting from the oxidation of KSCN. The other is the oscillation of H_2O_2 decomposition in both CSTR and batch reactors(reported by Orbáin in 1986). Under appropriate experimental conditions, the system exhibits a birhythmicity in a CSTR. Two different pH oscillations are reported here. The pH oscillations which accompany the decomposition of H_2O_2 exist in the batch reactor and the CSTR at a high flowrate, but the pH oscillations in a CSTR at a low flowrate originates from proton positive and negative feedback in the oxidation of KSCN. The oscillation of non-catalyzed oxidation of KSCN by hydrogen peroxide in a CSTR can be found. Also we have observed whether Cu^(2+) exists or not in the batch system, the pH increases to near neutral ultimately after pH drops twice.