In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive fun...In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive functional control(AFPFC) scheme for multivariable nonlinear systems was proposed.Firstly,multivariable nonlinear systems were described based on Takagi-Sugeno(T-S) fuzzy models;assuming that the antecedent parameters of T-S models were kept,the consequent parameters were identified on-line by using the weighted recursive least square(WRLS) method.Secondly,the identified T-S models were linearized to be time-varying state space model at each sampling instant.Finally,by using linear predictive control technique the analysis solution of the optimal control law of AFPFC was established.The application results for pH neutralization process show that the absolute error between the identified T-S model output and the process output is smaller than 0.015;the tracking ability of the proposed AFPFC is superior to that of non-AFPFC(NAFPFC) for pH process without disturbances,the overshoot of the effluent pH value of AFPFC with disturbances is decreased by 50% compared with that of NAFPFC;when the process parameters of AFPFC vary with time the integrated absolute error(IAE) performance index still retains to be less than 200 compared with that of NAFPFC.展开更多
Control of pH neutralization processes is challenging in the chemical process industry because of their inherent strong nonlinearity. In this paper, the model algorithmic control (MAC) strategy is extended to nonlinea...Control of pH neutralization processes is challenging in the chemical process industry because of their inherent strong nonlinearity. In this paper, the model algorithmic control (MAC) strategy is extended to nonlinear processes using Hammerstein model that consists of a static nonlinear polynomial function followed in series by a linear impulse response dynamic element. A new nonlinear Hammerstein MAC algorithm (named NLH-MAC) is presented in detail. The simulation control results of a pH neutralization process show that NLH-MAC gives better control performance than linear MAC and the commonly used industrial nonlinear propotional plus integral plus derivative (PID) controller. Further simulation experiment demonstrates that NLH-MAC not only gives good control response, but also possesses good stability and robustness even with large modeling errors.展开更多
After giving a short review of the methods used for detecting and monitoring in general systems, this paper describes the way of communication between computer and Computer Numerical Control (CNC) Machining Center (MC...After giving a short review of the methods used for detecting and monitoring in general systems, this paper describes the way of communication between computer and Computer Numerical Control (CNC) Machining Center (MC). Based on these, the paper addresses the means of performing in cycle measurement for manufacturing quality, provides an approach of improving the state of manufacturing process by achieving the real time change of control parameters according to the level of manufacturing process, and discusses the technique of implementing in process dimensional errors compensation corresponding to the in cycle measurement. The results of the experiments show that the frame design is successful and the operation is reliable. The system is taking shape nowadays.展开更多
Geographic Information System (GIS) software was used to create a watershed vulnerability model for Bernalillo County, New Mexico. Watershed vulnerability was investigated as a function of soil erosion and infiltratio...Geographic Information System (GIS) software was used to create a watershed vulnerability model for Bernalillo County, New Mexico. Watershed vulnerability was investigated as a function of soil erosion and infiltration criteria: precipitation, land slope, soil erodibility (K-factor), vegetation cover (NDVI), land use, drainage density, saturated hydraulic conductivity, and hydrologic soil group. Respective criteria weights were derived using a Fuzzy Analytic Hierarchy Process (FAHP) supported by expert opinion. A survey of 10 experts, representing New Mexico Institute of Mining and Technology (NMT), the New Mexico Bureau of Geology and Mineral Resources (NMBGMR), and the United States Geologic Survey (USGS), provided model input data for an integrated pair-wise comparison matrix for soil erosion and for infiltration. Individual criteria weights were determined by decomposing the respective fuzzy synthetic extent matrix using the centroid method. GIS layers were then combined based on criteria weights to produce maps of soil erosion potential and infiltration potential. A composite watershed vulnerability map was generated by equal weighting of each input map. Model results were categorized into five vulnerability categories: not vulnerable (N), slightly vulnerable (SV), moderately vulnerable (MV), highly vulnerable (HV), and extremely vulnerable (EV). The resulting FAHP/GIS model was used to generate a watershed vulnerability map of discrete areas in Bernalillo County, which may be vulnerable to stormwater run-off events and soil erosion. Such high volume run-off events can cause erosion damage to property and infrastructure. Alternatively, in areas near urban development, stormwater run-off may contribute non-point-source pollutant contamination of New Mexico’s surface water resources. The most problematic areas in Bernalillo County are present in the Eastern and Northwestern portions. However, less than 1% of the total area lies within the lowest and highest vulnerability categories with the majority centered around moderate vulnerability. The results of the model were compared with a previously published crisp AHP method. Both methods showed similar regional vulnerability trends. This MCDS/GIS approach is intended to provide support to local governments and decision makers in selection of suitable structural or nonstructural stormwater control measures.展开更多
The aim of this work is mathematical education through the knowledge system and mathematical modeling. A net model of formation of mathematical knowledge as a deductive theory is suggested here. Within this model the ...The aim of this work is mathematical education through the knowledge system and mathematical modeling. A net model of formation of mathematical knowledge as a deductive theory is suggested here. Within this model the formation of deductive theory is represented as the development of a certain informational space, the elements of which are structured in the form of the orientated semantic net. This net is properly metrized and characterized by a certain system of coverings. It allows injecting net optimization parameters, regulating qualitative aspects of knowledge system under consideration. To regulate the creative processes of the formation and realization of mathematical know- edge, stochastic model of formation deductive theory is suggested here in the form of branching Markovian process, which is realized in the corresponding informational space as a semantic net. According to this stochastic model we can get correct foundation of criterion of optimization creative processes that leads to “great main points” strategy (GMP-strategy) in the process of realization of the effective control in the research work in the sphere of mathematics and its applications.展开更多
电网换相换流器型高压直流输电(line commutated converter-based high voltage direct current,LCC-HVDC)系统若发生后续换相失败,将严重影响交直流混联电网的安全稳定运行。文中首先针对LCC-HVDC系统故障恢复过程中电流偏差控制作用...电网换相换流器型高压直流输电(line commutated converter-based high voltage direct current,LCC-HVDC)系统若发生后续换相失败,将严重影响交直流混联电网的安全稳定运行。文中首先针对LCC-HVDC系统故障恢复过程中电流偏差控制作用阶段易再次发生换相失败的问题,对电流偏差控制参数与换相失败之间的关系进行理论分析,发现此阶段系统若不发生换相失败,逆变侧LCC直流电压和交流换相电压须满足一定的约束关系,且该约束关系受电流偏差控制参数的直接影响。然后,基于理论分析结果,提出一种电流偏差控制参数整定方法,可改善系统故障恢复过程中对直流电压恢复速度和程度的控制要求,使系统更易满足直流电压与交流换相电压稳定运行约束关系,以降低后续换相失败概率。最后,利用PSCAD/EMTDC仿真平台CIGRE标准测试模型验证了理论分析的正确性以及参数整定方法的有效性。展开更多
基金Project(2007AA04Z162) supported by the National High-Tech Research and Development Program of ChinaProjects(2006T089, 2009T062) supported by the University Innovation Team in the Educational Department of Liaoning Province, China
文摘In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive functional control(AFPFC) scheme for multivariable nonlinear systems was proposed.Firstly,multivariable nonlinear systems were described based on Takagi-Sugeno(T-S) fuzzy models;assuming that the antecedent parameters of T-S models were kept,the consequent parameters were identified on-line by using the weighted recursive least square(WRLS) method.Secondly,the identified T-S models were linearized to be time-varying state space model at each sampling instant.Finally,by using linear predictive control technique the analysis solution of the optimal control law of AFPFC was established.The application results for pH neutralization process show that the absolute error between the identified T-S model output and the process output is smaller than 0.015;the tracking ability of the proposed AFPFC is superior to that of non-AFPFC(NAFPFC) for pH process without disturbances,the overshoot of the effluent pH value of AFPFC with disturbances is decreased by 50% compared with that of NAFPFC;when the process parameters of AFPFC vary with time the integrated absolute error(IAE) performance index still retains to be less than 200 compared with that of NAFPFC.
文摘Control of pH neutralization processes is challenging in the chemical process industry because of their inherent strong nonlinearity. In this paper, the model algorithmic control (MAC) strategy is extended to nonlinear processes using Hammerstein model that consists of a static nonlinear polynomial function followed in series by a linear impulse response dynamic element. A new nonlinear Hammerstein MAC algorithm (named NLH-MAC) is presented in detail. The simulation control results of a pH neutralization process show that NLH-MAC gives better control performance than linear MAC and the commonly used industrial nonlinear propotional plus integral plus derivative (PID) controller. Further simulation experiment demonstrates that NLH-MAC not only gives good control response, but also possesses good stability and robustness even with large modeling errors.
文摘After giving a short review of the methods used for detecting and monitoring in general systems, this paper describes the way of communication between computer and Computer Numerical Control (CNC) Machining Center (MC). Based on these, the paper addresses the means of performing in cycle measurement for manufacturing quality, provides an approach of improving the state of manufacturing process by achieving the real time change of control parameters according to the level of manufacturing process, and discusses the technique of implementing in process dimensional errors compensation corresponding to the in cycle measurement. The results of the experiments show that the frame design is successful and the operation is reliable. The system is taking shape nowadays.
文摘Geographic Information System (GIS) software was used to create a watershed vulnerability model for Bernalillo County, New Mexico. Watershed vulnerability was investigated as a function of soil erosion and infiltration criteria: precipitation, land slope, soil erodibility (K-factor), vegetation cover (NDVI), land use, drainage density, saturated hydraulic conductivity, and hydrologic soil group. Respective criteria weights were derived using a Fuzzy Analytic Hierarchy Process (FAHP) supported by expert opinion. A survey of 10 experts, representing New Mexico Institute of Mining and Technology (NMT), the New Mexico Bureau of Geology and Mineral Resources (NMBGMR), and the United States Geologic Survey (USGS), provided model input data for an integrated pair-wise comparison matrix for soil erosion and for infiltration. Individual criteria weights were determined by decomposing the respective fuzzy synthetic extent matrix using the centroid method. GIS layers were then combined based on criteria weights to produce maps of soil erosion potential and infiltration potential. A composite watershed vulnerability map was generated by equal weighting of each input map. Model results were categorized into five vulnerability categories: not vulnerable (N), slightly vulnerable (SV), moderately vulnerable (MV), highly vulnerable (HV), and extremely vulnerable (EV). The resulting FAHP/GIS model was used to generate a watershed vulnerability map of discrete areas in Bernalillo County, which may be vulnerable to stormwater run-off events and soil erosion. Such high volume run-off events can cause erosion damage to property and infrastructure. Alternatively, in areas near urban development, stormwater run-off may contribute non-point-source pollutant contamination of New Mexico’s surface water resources. The most problematic areas in Bernalillo County are present in the Eastern and Northwestern portions. However, less than 1% of the total area lies within the lowest and highest vulnerability categories with the majority centered around moderate vulnerability. The results of the model were compared with a previously published crisp AHP method. Both methods showed similar regional vulnerability trends. This MCDS/GIS approach is intended to provide support to local governments and decision makers in selection of suitable structural or nonstructural stormwater control measures.
文摘The aim of this work is mathematical education through the knowledge system and mathematical modeling. A net model of formation of mathematical knowledge as a deductive theory is suggested here. Within this model the formation of deductive theory is represented as the development of a certain informational space, the elements of which are structured in the form of the orientated semantic net. This net is properly metrized and characterized by a certain system of coverings. It allows injecting net optimization parameters, regulating qualitative aspects of knowledge system under consideration. To regulate the creative processes of the formation and realization of mathematical know- edge, stochastic model of formation deductive theory is suggested here in the form of branching Markovian process, which is realized in the corresponding informational space as a semantic net. According to this stochastic model we can get correct foundation of criterion of optimization creative processes that leads to “great main points” strategy (GMP-strategy) in the process of realization of the effective control in the research work in the sphere of mathematics and its applications.
文摘电网换相换流器型高压直流输电(line commutated converter-based high voltage direct current,LCC-HVDC)系统若发生后续换相失败,将严重影响交直流混联电网的安全稳定运行。文中首先针对LCC-HVDC系统故障恢复过程中电流偏差控制作用阶段易再次发生换相失败的问题,对电流偏差控制参数与换相失败之间的关系进行理论分析,发现此阶段系统若不发生换相失败,逆变侧LCC直流电压和交流换相电压须满足一定的约束关系,且该约束关系受电流偏差控制参数的直接影响。然后,基于理论分析结果,提出一种电流偏差控制参数整定方法,可改善系统故障恢复过程中对直流电压恢复速度和程度的控制要求,使系统更易满足直流电压与交流换相电压稳定运行约束关系,以降低后续换相失败概率。最后,利用PSCAD/EMTDC仿真平台CIGRE标准测试模型验证了理论分析的正确性以及参数整定方法的有效性。