Two Zn(II) coordination polymers, namely [Zn2(bpy)(aobtc)(H2O)2]·2H2O(1) and [Zn2(bpy)(aobtc)(H2O)]·4H2O(2)(bpy = 4,4'-bipyridine, H4 aobtc = 3,3',5,5'-azoxybenzenetetracarboxylic acid...Two Zn(II) coordination polymers, namely [Zn2(bpy)(aobtc)(H2O)2]·2H2O(1) and [Zn2(bpy)(aobtc)(H2O)]·4H2O(2)(bpy = 4,4'-bipyridine, H4 aobtc = 3,3',5,5'-azoxybenzenetetracarboxylic acid) have been hydrothermally synthesized through tuning the p H value of the reaction system(1, C(26)H(22)N(4)O(13)Zn2, Mr = 729.21; 2, C(26)H(24)N4O(14)Zn2, Mr = 747.23), and their structures have been determined by single-crystal X-ray diffraction analyses. Compound 2 has been further characterized by infrared spectra(IR), elemental analyses, thermal analyses and powder X-ray diffraction(PXRD) analyses. Additionally, the photoluminescence of 2 is also discussed. The structure demonstrates that the crystal of 2 belongs to the triclinic system, space group P1 with a = 8.41494(18), b = 9.59838(19), c = 17.6477(3) ?, α = 91.5098(16), β = 98.1439(17), γ = 90.4323(17)°, V = 1410.44(5) ^3, Z = 2, ρcalc = 1.759 g/cm^3, μ = 2.819 mm-1, F(000) = 760.0, R = 0.0311 and w R = 0.0839(I 〉 2σ(I)). Compound 1 shows a two-dimensional monolayer while compound 2 displays a novel 2D double-layered network constructed from monolayer motifs, which is similar to the single layer in 1. Further, each bilayer motif in 2 is interdigitated by two others in a parallel fashion to yield an unusual 2D → 3D interdigitated framework.展开更多
The effects of pH value on crystal size and optical property of zinc oxide nanoparticles prepared by chemical precipitation method were investigated.Prepared samples have been characterized by means of X-ray diffracti...The effects of pH value on crystal size and optical property of zinc oxide nanoparticles prepared by chemical precipitation method were investigated.Prepared samples have been characterized by means of X-ray diffraction,scanning electron microscopy,ultraviolet-visible spectrometer and photoluminescence spectrometer.From X-ray diffraction profile,it is found that the particle size of sample increases from 13.8 to 33 nm when the pH value of the solution was increased from 6 to 13.Microstructural study also shows that the particle size increases with pH value.Hexagonal shape of the zinc oxide nanoparticle has been confirmed by the scanning electron microscopy image.The recorded ultraviolet-visible spectrum shows excitonic absorption peaks around 381 nm.The energy gap of the prepared samples has been determined from the ultraviolet-visible absorption spectrum,effective mass model equation and Tauc's relation.It was found that the energy gap of the prepared samples decreases with increase in pH value.The recorded blue shift confirmed the quantum confinement effect in the prepared zinc oxide samples.Photoluminescence spectrum infers that the increase in pH value shifts the ultraviolet-visible emission but not the violet and green emissions.展开更多
基金Financially supported by the National Natural Science Foundation of China(No.21571149)the Program for Chongqing Excellent Talents in University,the Fundamental Research Funds for the Central Universities(XDJK2013A027,XDJK2016C101)the Open Foundation of Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education(338080045)
文摘Two Zn(II) coordination polymers, namely [Zn2(bpy)(aobtc)(H2O)2]·2H2O(1) and [Zn2(bpy)(aobtc)(H2O)]·4H2O(2)(bpy = 4,4'-bipyridine, H4 aobtc = 3,3',5,5'-azoxybenzenetetracarboxylic acid) have been hydrothermally synthesized through tuning the p H value of the reaction system(1, C(26)H(22)N(4)O(13)Zn2, Mr = 729.21; 2, C(26)H(24)N4O(14)Zn2, Mr = 747.23), and their structures have been determined by single-crystal X-ray diffraction analyses. Compound 2 has been further characterized by infrared spectra(IR), elemental analyses, thermal analyses and powder X-ray diffraction(PXRD) analyses. Additionally, the photoluminescence of 2 is also discussed. The structure demonstrates that the crystal of 2 belongs to the triclinic system, space group P1 with a = 8.41494(18), b = 9.59838(19), c = 17.6477(3) ?, α = 91.5098(16), β = 98.1439(17), γ = 90.4323(17)°, V = 1410.44(5) ^3, Z = 2, ρcalc = 1.759 g/cm^3, μ = 2.819 mm-1, F(000) = 760.0, R = 0.0311 and w R = 0.0839(I 〉 2σ(I)). Compound 1 shows a two-dimensional monolayer while compound 2 displays a novel 2D double-layered network constructed from monolayer motifs, which is similar to the single layer in 1. Further, each bilayer motif in 2 is interdigitated by two others in a parallel fashion to yield an unusual 2D → 3D interdigitated framework.
文摘The effects of pH value on crystal size and optical property of zinc oxide nanoparticles prepared by chemical precipitation method were investigated.Prepared samples have been characterized by means of X-ray diffraction,scanning electron microscopy,ultraviolet-visible spectrometer and photoluminescence spectrometer.From X-ray diffraction profile,it is found that the particle size of sample increases from 13.8 to 33 nm when the pH value of the solution was increased from 6 to 13.Microstructural study also shows that the particle size increases with pH value.Hexagonal shape of the zinc oxide nanoparticle has been confirmed by the scanning electron microscopy image.The recorded ultraviolet-visible spectrum shows excitonic absorption peaks around 381 nm.The energy gap of the prepared samples has been determined from the ultraviolet-visible absorption spectrum,effective mass model equation and Tauc's relation.It was found that the energy gap of the prepared samples decreases with increase in pH value.The recorded blue shift confirmed the quantum confinement effect in the prepared zinc oxide samples.Photoluminescence spectrum infers that the increase in pH value shifts the ultraviolet-visible emission but not the violet and green emissions.