The efficient photo-response mechanism is one of the key factors in the commercialization of dye-sensitized solar cells in a bid to satisfy renewable energy demands. Progress in green technology has put solar energy o...The efficient photo-response mechanism is one of the key factors in the commercialization of dye-sensitized solar cells in a bid to satisfy renewable energy demands. Progress in green technology has put solar energy on the front burner as a provider of clean and affordable energy for a sustainable society. We report the synthesis of a novel Schiff base with optical transparency in the visible and near IR region of the solar spectrum that can find application in the DSSCs photo-response mechanism. The synthesized crystal exhibited features that could handle some of the shortcomings of dye-sensitized solar cells which include wide band solar spectrum absorption and capability for swift charge transfer within the photoelectrodes. The synthesized Schiff base was characterized using x-ray diffractometer, UV/Visible spectrometer, Frontier transmission infrared spectrometer and conductometer. XRD data revealed the grown crystal to have an average crystallite size of 2.08 nm with average microstrain value of about 269.43. The FT-IR recorded transmission wave ѵ (CO) at 1207.7 cm<sup>−1</sup> while dominant wave occurred at ѵ1654.9 and ѵ1592.3 cm<sup>−1</sup> relating to ѵ (CN) stretching and ѵ (NH) bending respectively were observed. The IR spectrum revealed the bonding species and a probable molecular structure of 2,6-bis(benzyloxy)pyridine. The UV/Visible spectra convoluted to maximum peak within the near IR region suggesting that 2,6-bis(benzyloxy)pyridine can absorb both the visible and near IR region while its electrical conductivity was determined to be 4.58 µS/cm. The obtained result of the present study revealed promising characteristics of a photosensitizer that can find application in the photo-response mechanism of DSSCs.展开更多
A new type of dye-sensitized nanocrystalline solid state photovoltaic cell based on the wide band gap n-TiO2/p-CuI heterojunction was fabricated. Tetra-carboxyphenyl porphyrine (TPP-(COOH)(4)), squarylium cyanine deri...A new type of dye-sensitized nanocrystalline solid state photovoltaic cell based on the wide band gap n-TiO2/p-CuI heterojunction was fabricated. Tetra-carboxyphenyl porphyrine (TPP-(COOH)(4)), squarylium cyanine derivative (SQ-(CH2),(SO3Py+)-Py-.) and ruthenium bipyridyl complex (RuL2(NCS)(2)) were used as photosensitizers. Larger photocurrents and photovoltages were shown in the cell sensitized by ruthenium bipyridyl complex and can be further increased by intercalation of a TiO2 thin underlayer.展开更多
Titania is one kind of important materials, which has been extensively investigated because of its unique electronic and optical properties. Research efforts have largely focused on the optimization of the dye,but rec...Titania is one kind of important materials, which has been extensively investigated because of its unique electronic and optical properties. Research efforts have largely focused on the optimization of the dye,but recently the titania nanostructures electrode itself has attracted more attention. It has been shown that particle size, shape, crystallinity, surface morphology, and chemistry of the TiO_2 material are key parameters which should be controlled for optimized performance of the solar cell. Titania can be found in different shape of nanostructures including mesoporous, nanotube, nanowire, and nanorod structures. The present article reviews the structural, synthesis, electronic, and optical properties of TiO_2 nanostructures for dye sensitized solar cells.展开更多
A low cost cyanine dye, 1,1-dimethyl-3-ethyl-2-[3-(1,3-dihydro-3,3-dimethyl-1-ethyl- 5-carboxyl-2H-indol-2-ylidene)-1-propenyl]-1H-benz[e] indolium iodide (1) was synthesized and applied to sensitize mesoporous TiO2 e...A low cost cyanine dye, 1,1-dimethyl-3-ethyl-2-[3-(1,3-dihydro-3,3-dimethyl-1-ethyl- 5-carboxyl-2H-indol-2-ylidene)-1-propenyl]-1H-benz[e] indolium iodide (1) was synthesized and applied to sensitize mesoporous TiO2 electrode. Photoresponse of the electrode was extended to the visible and remarkably high incident photon-to-current conversion efficiency (IPCE) over 70% was achieved from 500 nm to 600 nm.展开更多
Photocatalytic oxidation desulfurization has become a research hotspot in recent years because of mild reaction conditions, less energy consumption and high selectivity. In this paper, TiO2 was loaded onto SBA-15 mole...Photocatalytic oxidation desulfurization has become a research hotspot in recent years because of mild reaction conditions, less energy consumption and high selectivity. In this paper, TiO2 was loaded onto SBA-15 molecular sieves and sensitized with organic dyes(2, 9-dichloroquinacridone, DCQ) to extend its spectral response range from ultraviolet light to visible light. The catalyst DCQ-X%TiO2@SBA-15 was characterized by BET measurements, X-ray diffraction, Fourier transform infrared spectroscopy and Ultraviolet-visible diffuse reflection spectra, and then it was applied for photocatalytic oxidation desulfurization of gasoline. The effects of different catalytic systems, TiO2 concentration, catalyst dosage, and different model sulfur compounds on catalytic desulfurization performance were investigated. Experimental results show that DCQ-TiO2@SBA-15 has a better performance than the unsensitized TiO2@SBA-15, and the desulfurization rate can reach up to 96.1% in a reaction time of 90 min.展开更多
A flexible counter electrode(CE) for dye-sensitized solar cells(DSCs) has been fabricated using a micro-porous polyvinylidene fluoride membrane as support media and sputtered Pt as the catalytic material.Non-conventio...A flexible counter electrode(CE) for dye-sensitized solar cells(DSCs) has been fabricated using a micro-porous polyvinylidene fluoride membrane as support media and sputtered Pt as the catalytic material.Non-conventional structure DSCs have been developed by the fabricated CEs. The Pt metal was sputtered onto one surface of the membrane as the catalytic material. DSCs were assembled by attaching the Ti O2 electrode to the membrane surface without Pt coating. The membrane was with cylindrical pore geometry. It served not only as a substrate for the CE but also as a spacer for the DSC. The fabricated DSC with the flexible membrane CE showed higher photocurrent density than the conventional sandwich devices based on chemically deposited Pt/FTO glass, achieving a photovoltaic conversion efficiency of 4.43%. The results provides useful information in investigation and development of stable, low-cost, simple-design, flexible and lightweight DSCs.展开更多
Herein, we report the design and synthesis of three new D-A type metal-free carbazole based dyes(S1-3)as effective co-sensitizers for dye-sensitized solar cell(DSSC) sensitized with Ru(Ⅱ) complex(NCSU-10).In ...Herein, we report the design and synthesis of three new D-A type metal-free carbazole based dyes(S1-3)as effective co-sensitizers for dye-sensitized solar cell(DSSC) sensitized with Ru(Ⅱ) complex(NCSU-10).In this new design, the electron rich carbazole unit was attached to three different electron withdrawing/anchoring species, viz. 4-amino benzoic acid, sulfanilic acid and barbituric acid. The dyes were characterized by spectral, photophysical and electrochemical analysis. Their optical and electrochemical parameters along with molecular geometries, optimized from DFT have been employed to apprehend the effect of the structures of these co-sensitizers on the photovoltaic performances. Further, S1-3 dyes were co-sensitized along with a well-known NCSU-10 dye in order to broaden the spectral response of the co-sensitized devices and hence improve the efficiency. The photovoltaic performance studies indicated that, the device fabricated using S1 dye as co-sensitizer with 0.2 mM of NCSU-10 exhibited improved PCE of 9.55% with JSC of 22.85 mA cm-2, VOC of 0.672 V and FF of 62.2%, whereas the DSSC fabricated with dye NCSU-10(0.2 mM) alone displayed PCE of 8.25% with JSC of 20.41 mA cm-2, VOC of 0.667 V and FF of 60.6%. Furthermore, electronic excitations simulated using time-dependent DFT, were in good agreement with the experimentally obtained results of the co-sensitizers, indicating that the exchange-correlation function and basis set utilized for predicting the spectra of the co-sensitizers are quite appropriate for the calculations. In conclusion, the results showed the potential of simple organic co-sensitizers in the development of efficient DSSCs.展开更多
The micro-ring like structured zinc oxide(ZnO) film was deposited on SnO_2: F coated glass substrate by sol-gel dip-coating technique with 1.0 g polyethylene glycol(PEG) content. The surface morphology of micro-ring s...The micro-ring like structured zinc oxide(ZnO) film was deposited on SnO_2: F coated glass substrate by sol-gel dip-coating technique with 1.0 g polyethylene glycol(PEG) content. The surface morphology of micro-ring structured ZnO film has been confirmed by the scanning electron microscope. This ZnO film is used to fabricate the solar cell with the help of ruthenium based dye and carbon counter electrode. The photoelectric and incident photon-to-current conversion efficiency was 1.17% and 48.4%, respectively. The DSC results have been compared with ZnO films prepared without PEG contents.展开更多
Dye-sensitized solar cell (DSC) consists a combination of several different materials: photoanodes with nanoparticulated semiconductors, sensitizers, electrolytes and counter electrodes (CEs). Each materials perf...Dye-sensitized solar cell (DSC) consists a combination of several different materials: photoanodes with nanoparticulated semiconductors, sensitizers, electrolytes and counter electrodes (CEs). Each materials performs specific task for the conversion of solar energy into electricity. The main function of CE is to transfer electrons to the redox electrolyte and regenerate iodide ion. The work of CE is mainly focused on the studies of the kinetic performance and stability of the traditional CEs to improve the overall efficiency of DSC, seeking novel design concepts or new materials. In this review, the development and research progress of different CE materials and their electrochemical performance, and the problems are discussed.展开更多
The ZnO-modified TiO2 electrode was prepared by adding Zn(CH3COO)2·2H2O to the TiO2 colloid during the sol-gel production process, and was used in dye-sensitized solar cells (DSCs). The open circuit voltage ...The ZnO-modified TiO2 electrode was prepared by adding Zn(CH3COO)2·2H2O to the TiO2 colloid during the sol-gel production process, and was used in dye-sensitized solar cells (DSCs). The open circuit voltage (Voc) and fill factor (if) of the cells were improved sig- nificantly. The performances of the ZnO-modified TiO2 electrode such as dark current, transient photocurrent, impedance, absorption spectra, and fiat band potential (Vfb) were investigated. It is found that the interface charge recombination impedance increases and Vfb shifts about 200 mV toward the cathodic potential. The effect mechanism of ZnO modification on the performance of DSCs may be that ZnO occupies the surface states of the TiO2 film.展开更多
In order to improve the performance of the dye-sensitized solar cells based on ZnO films, ZnO nanoparticles of different sizes were prepared by two methods. Some surfactants were added into the particles to form three...In order to improve the performance of the dye-sensitized solar cells based on ZnO films, ZnO nanoparticles of different sizes were prepared by two methods. Some surfactants were added into the particles to form three types of ZnO pastes. Electrodes of various thickness applied to dye-sensitized solar cell were prepared starting from each of those pastes by the screen-printing method. The performance of dye-sensitized solar cells was optimized via both the selected particle size and film thickness. The reason of the inefficiency was explained by the infrared and ultraviolet- visible absorption spectra.展开更多
Development of cost-effective and robust counter electrodes(CEs) is a persistent objective for highefficiency dye-sensitized solar cells(DSSCs). To achieve this goal, we present here the hydrothermal synthesis of well...Development of cost-effective and robust counter electrodes(CEs) is a persistent objective for highefficiency dye-sensitized solar cells(DSSCs). To achieve this goal, we present here the hydrothermal synthesis of well-aligned Ni Pt alloy CEs, which is templated by ZnO nanowires and nanosheets. The preliminary results demonstrate that Ni Pt alloy electrodes are featured by increased charge-transfer processes and electrocatalytic activity in comparison with expensive Pt CE, yielding power conversion efficiencies of 8.29% and 7.41% in corresponding DSSCs with Ni Pt nanowire and nanosheet alloy CEs, respectively. Additionally, the Ni Pt alloy CEs also display extraordinary dissolution-resistant ability when suffering longterm utilization in liquid-junction DSSCs.展开更多
The photosensitive initiating system composed of 7-diethylamino-3-(2'-benzimidazolyl)coumarin dye (DEDC) and diphenyliodonium hexafluorophosphate (DIHP) which act as the sensitizer and the initiator respectively, ...The photosensitive initiating system composed of 7-diethylamino-3-(2'-benzimidazolyl)coumarin dye (DEDC) and diphenyliodonium hexafluorophosphate (DIHP) which act as the sensitizer and the initiator respectively, can be used to initiate the polymerization of methyl methacrylate (MMA). The results showed that when exposed to visible light, coumarin dye/iodonium salt undergoes quick electron transfer from DEDC to DIHP and free radicals are produced. The visible light photoinduced reaction between DEDC and DIHP is mainly through the excited singlet state of DEDC and thus it is a little sensitive to O-2. The influence of concentration of DEDC, DIHP and MMA on the rate of photopolymerization of MMA was also investigated.展开更多
New metal-free organic dye sensitizers containing mono-triphenylamine or bis-triphenylamine as the electron donor, a thiophene as the π-conjugated system, and a cyanoacrylic acid moiety as the electron acceptor were ...New metal-free organic dye sensitizers containing mono-triphenylamine or bis-triphenylamine as the electron donor, a thiophene as the π-conjugated system, and a cyanoacrylic acid moiety as the electron acceptor were synthesized. The optical and electrochemical properties of the dyes were investigated,and their performance as sensitizers in solar cells was evaluated. Dye-sensitized solar cells based on dye containing bis-triphenylamine as the electron donor produced a photon-to-current conversion efficiency of 6.06%(Jsc = 14.21 m A/cm;, Voc = 0.62 V, ff = 0.69) under 100 m W/cm;simulated AM 1.5 G solar irradiation(100 m W/cm;).展开更多
Titanium tetrachloride (TiCl4) treatment was employed to TiO2 coating deposited on fluoride-doped tin oxide (FTO) conducting glass and indium oxide doped tin oxide (ITO) conducting glass, respectively. The nano-crysta...Titanium tetrachloride (TiCl4) treatment was employed to TiO2 coating deposited on fluoride-doped tin oxide (FTO) conducting glass and indium oxide doped tin oxide (ITO) conducting glass, respectively. The nano-crystalline TiO2 coating was deposited using a composite powder composed of polyethylene glycol (PEG) and 25 nm TiO2 particles by vacuum cold spraying (VCS) process. A commercial N-719 dye was used to adsorb on the surface of TiO2 coating to prepare TiO2 electrode, which was applied to assemble dye-sensitized solar cell (DSC). The cell performance was measured under simulated solar light at an intensity of 100 mW·cm-2. Results show that with an FTO substrate the DSC composed of a VCS TiO2 electrode untreated by TiCl4 gives a short-circuit current density of 13.1 mA·cm-2 and an open circuit voltage of 0.60 V corresponding to an overall conversion efficiency of 4.4%. It is found that after TiCl4 treatment to the VCS TiO2 electrode with an FTO substrate, the short circuit current density of the cell increases by 31%, the open-circuit voltage increases by 60 mV and a higher conversion yield of 6.5% was obtained. However, when an ITO substrate is used to deposit TiO2 coating by VCS, after TiCl4 treatment, the conversion efficiency of the assembled cell reduces slightly due to corrosion of the conducting layer on the ITO glass by TiCl4.展开更多
A bi-layer photoanode for dye-sensitized solar cell(DSSC) was fabricated, in which TiO_2 hollow spheres(THSs) were designed as a scattering layer and P25/multi-walled carbon nanotubes(MWNTs) as an under-layer. The THS...A bi-layer photoanode for dye-sensitized solar cell(DSSC) was fabricated, in which TiO_2 hollow spheres(THSs) were designed as a scattering layer and P25/multi-walled carbon nanotubes(MWNTs) as an under-layer. The THSs were synthesized by a sacrifice template method and showed good light scattering ability as an over-layer of the photoanode. MWNTs were mixed with P25 to form an under-layer of the photoanode to improve the electron transmission ability of the photoanode. The power conversion efficiency of this kind of DSSC with bi-layer was enhanced to 5.13 %,which is 14.25 % higher than that of pure P25 DSSC.Graphical Abstract A bi-layer composite photoanode based on P25/MWNTs-THSs with improved light scattering and electron transmission, which will provide a new insight into fabrication and structure design of highly efficient dyesensitized solar cells.展开更多
Tungsten doped(W-doped) TiO_2 mesoporous nanobeads, possessing high surface area and superior scattering effect, were used for photoanode preparation. The W-doping would induce a positive shift of the TiO_2 conduction...Tungsten doped(W-doped) TiO_2 mesoporous nanobeads, possessing high surface area and superior scattering effect, were used for photoanode preparation. The W-doping would induce a positive shift of the TiO_2 conduction band, and enhance the driving force for electron injection and collection efficiencies. The electrochemical impedance spectra indicated a retarded charge recombination and increased electron diffusion length after W-doping. By fine-tuning the W-doping concentration to 0.25%, aqueous DSCs produced a significant improved the open circuit voltage of 712 mV and a short circuit current of 7.05 mA·cm^(-2), leading to an overall increased power conversion efficiency of 3.40% at 1 000 W·m^(-2) simulated irradiation, which is roughly 25% enhancement compared to that without W-doping photoanode.展开更多
Platinum nanoparticles (PtNPs)/graphene composite materials are synthesized by a controlled chemical reduction of H2PtC16 on graphene sheets. The electrocatalytic activity of a PtNPs/graphene composite counter elect...Platinum nanoparticles (PtNPs)/graphene composite materials are synthesized by a controlled chemical reduction of H2PtC16 on graphene sheets. The electrocatalytic activity of a PtNPs/graphene composite counter electrode for a dye-sensitized solar cell (DSSC) is investigated. The results demonstrate that the PtNPs/graphene composite has high electrocatalytic activity for the dye-sensitized solar cell. The cell employing PtNPs (1.6 wt%)/graphene counter electrode reaches an conversion efficiency (η) of 3.89% upon the excitation of 100 mW/cm2 AM 1.5 white light, which is comparable to that of the cell with a Pt-film counter electrode (7 = 3.76%). It suggests that one can use only 14% Pt content of the conventional Pt-film counter electrode to obtain a comparable conversion efficiency. It may be possible to obtain a high performance DSSC using the PtNPs/graphene composite with a very low Pt content as a counter electrode due to its simplicity, low cost, and large scalability.展开更多
The exploration of polymer electrolyte in the field of dye sensitized solar cell(DSSC) can contribute to increase the invention of renewable energy applications. In the present work, the influence of imidazole on the ...The exploration of polymer electrolyte in the field of dye sensitized solar cell(DSSC) can contribute to increase the invention of renewable energy applications. In the present work, the influence of imidazole on the poly(vinylidene fluoride)(PVDF)–poly(methyl methacrylate)(PMMA)–Ethylene carbonate(EC)–KI–I2 polymer blend electrolytes has been evaluated. The different weight percentages of imidazole added into polymer blend electrolytes have been prepared by solution casting. The prepared films were characterized by Fourier transform infrared spectroscopy(FTIR), X-ray diffraction(XRD), thermogravimetric analysis(TGA), UV–visible spectra, photoluminescence spectra and impedance spectroscopy. The surface roughness texture of the film was analyzed by atomic force microscopy(AFM). The ionic conductivity of the optimized polymer blend electrolyte was determined by impedance measurement, which is 1.95 × 10-3 S·cm-1 at room temperature. The polymer electrolyte containing 40 wt% of imidazole content exhibits the highest photo-conversion efficiency of 3.04%under the illumination of 100 m W·cm-2. Moreover, a considerable enhancement in the stability of the DSSC device was demonstrated.展开更多
In order to develop a new strategy to deposit nano-particle sized water oxidation catalyst based on earth abundant element to the photoanode in a photoelectrochemical cell for water splitting, Co;O;as water oxidation ...In order to develop a new strategy to deposit nano-particle sized water oxidation catalyst based on earth abundant element to the photoanode in a photoelectrochemical cell for water splitting, Co;O;as water oxidation catalyst was prepared and subsequently modified by 3-aminopropyltriethoxysilane. The amino functionalized Co;O;catalyst was carefully characterized and then integrated to the ruthenium dye sensitized photoelectrode through fast Schiff base reaction. Cyclic voltammetry experiments in the dark confirmed that the modified Co;O;catalyst was still active toward water oxidation, which could be initiated by oxidation of the ruthenium photosensitizer. Under visible light irradiation, incorporation of the modified Co;O;catalyst resulted in dramatic enhancement of the transient photocurrent density for the photoanode, which was 8 times higher than that of without Co;O;catalyst.展开更多
文摘The efficient photo-response mechanism is one of the key factors in the commercialization of dye-sensitized solar cells in a bid to satisfy renewable energy demands. Progress in green technology has put solar energy on the front burner as a provider of clean and affordable energy for a sustainable society. We report the synthesis of a novel Schiff base with optical transparency in the visible and near IR region of the solar spectrum that can find application in the DSSCs photo-response mechanism. The synthesized crystal exhibited features that could handle some of the shortcomings of dye-sensitized solar cells which include wide band solar spectrum absorption and capability for swift charge transfer within the photoelectrodes. The synthesized Schiff base was characterized using x-ray diffractometer, UV/Visible spectrometer, Frontier transmission infrared spectrometer and conductometer. XRD data revealed the grown crystal to have an average crystallite size of 2.08 nm with average microstrain value of about 269.43. The FT-IR recorded transmission wave ѵ (CO) at 1207.7 cm<sup>−1</sup> while dominant wave occurred at ѵ1654.9 and ѵ1592.3 cm<sup>−1</sup> relating to ѵ (CN) stretching and ѵ (NH) bending respectively were observed. The IR spectrum revealed the bonding species and a probable molecular structure of 2,6-bis(benzyloxy)pyridine. The UV/Visible spectra convoluted to maximum peak within the near IR region suggesting that 2,6-bis(benzyloxy)pyridine can absorb both the visible and near IR region while its electrical conductivity was determined to be 4.58 µS/cm. The obtained result of the present study revealed promising characteristics of a photosensitizer that can find application in the photo-response mechanism of DSSCs.
文摘A new type of dye-sensitized nanocrystalline solid state photovoltaic cell based on the wide band gap n-TiO2/p-CuI heterojunction was fabricated. Tetra-carboxyphenyl porphyrine (TPP-(COOH)(4)), squarylium cyanine derivative (SQ-(CH2),(SO3Py+)-Py-.) and ruthenium bipyridyl complex (RuL2(NCS)(2)) were used as photosensitizers. Larger photocurrents and photovoltages were shown in the cell sensitized by ruthenium bipyridyl complex and can be further increased by intercalation of a TiO2 thin underlayer.
文摘Titania is one kind of important materials, which has been extensively investigated because of its unique electronic and optical properties. Research efforts have largely focused on the optimization of the dye,but recently the titania nanostructures electrode itself has attracted more attention. It has been shown that particle size, shape, crystallinity, surface morphology, and chemistry of the TiO_2 material are key parameters which should be controlled for optimized performance of the solar cell. Titania can be found in different shape of nanostructures including mesoporous, nanotube, nanowire, and nanorod structures. The present article reviews the structural, synthesis, electronic, and optical properties of TiO_2 nanostructures for dye sensitized solar cells.
文摘A low cost cyanine dye, 1,1-dimethyl-3-ethyl-2-[3-(1,3-dihydro-3,3-dimethyl-1-ethyl- 5-carboxyl-2H-indol-2-ylidene)-1-propenyl]-1H-benz[e] indolium iodide (1) was synthesized and applied to sensitize mesoporous TiO2 electrode. Photoresponse of the electrode was extended to the visible and remarkably high incident photon-to-current conversion efficiency (IPCE) over 70% was achieved from 500 nm to 600 nm.
基金This research was funded by National Natural Science Foundation of China (Grant No. 21676099)the Fundamental Research Funds for the Central Universities, South China University of Technology
文摘Photocatalytic oxidation desulfurization has become a research hotspot in recent years because of mild reaction conditions, less energy consumption and high selectivity. In this paper, TiO2 was loaded onto SBA-15 molecular sieves and sensitized with organic dyes(2, 9-dichloroquinacridone, DCQ) to extend its spectral response range from ultraviolet light to visible light. The catalyst DCQ-X%TiO2@SBA-15 was characterized by BET measurements, X-ray diffraction, Fourier transform infrared spectroscopy and Ultraviolet-visible diffuse reflection spectra, and then it was applied for photocatalytic oxidation desulfurization of gasoline. The effects of different catalytic systems, TiO2 concentration, catalyst dosage, and different model sulfur compounds on catalytic desulfurization performance were investigated. Experimental results show that DCQ-TiO2@SBA-15 has a better performance than the unsensitized TiO2@SBA-15, and the desulfurization rate can reach up to 96.1% in a reaction time of 90 min.
基金supported by National Natural Science Foundation of China(No.10774046)Shanghai Municipal Science&Technology Committee(No.09JC1404600+1 种基金No.0852nm06100 and No.08230705400)Singapore Ministry of Education innovation fund(MOE IF Funding MOE2008-IF-1-016)
文摘A flexible counter electrode(CE) for dye-sensitized solar cells(DSCs) has been fabricated using a micro-porous polyvinylidene fluoride membrane as support media and sputtered Pt as the catalytic material.Non-conventional structure DSCs have been developed by the fabricated CEs. The Pt metal was sputtered onto one surface of the membrane as the catalytic material. DSCs were assembled by attaching the Ti O2 electrode to the membrane surface without Pt coating. The membrane was with cylindrical pore geometry. It served not only as a substrate for the CE but also as a spacer for the DSC. The fabricated DSC with the flexible membrane CE showed higher photocurrent density than the conventional sandwich devices based on chemically deposited Pt/FTO glass, achieving a photovoltaic conversion efficiency of 4.43%. The results provides useful information in investigation and development of stable, low-cost, simple-design, flexible and lightweight DSCs.
基金Department of Textile Engineering, Chemistry and Science at North Carolina State University for the financial support
文摘Herein, we report the design and synthesis of three new D-A type metal-free carbazole based dyes(S1-3)as effective co-sensitizers for dye-sensitized solar cell(DSSC) sensitized with Ru(Ⅱ) complex(NCSU-10).In this new design, the electron rich carbazole unit was attached to three different electron withdrawing/anchoring species, viz. 4-amino benzoic acid, sulfanilic acid and barbituric acid. The dyes were characterized by spectral, photophysical and electrochemical analysis. Their optical and electrochemical parameters along with molecular geometries, optimized from DFT have been employed to apprehend the effect of the structures of these co-sensitizers on the photovoltaic performances. Further, S1-3 dyes were co-sensitized along with a well-known NCSU-10 dye in order to broaden the spectral response of the co-sensitized devices and hence improve the efficiency. The photovoltaic performance studies indicated that, the device fabricated using S1 dye as co-sensitizer with 0.2 mM of NCSU-10 exhibited improved PCE of 9.55% with JSC of 22.85 mA cm-2, VOC of 0.672 V and FF of 62.2%, whereas the DSSC fabricated with dye NCSU-10(0.2 mM) alone displayed PCE of 8.25% with JSC of 20.41 mA cm-2, VOC of 0.667 V and FF of 60.6%. Furthermore, electronic excitations simulated using time-dependent DFT, were in good agreement with the experimentally obtained results of the co-sensitizers, indicating that the exchange-correlation function and basis set utilized for predicting the spectra of the co-sensitizers are quite appropriate for the calculations. In conclusion, the results showed the potential of simple organic co-sensitizers in the development of efficient DSSCs.
基金the Ministry of EducationCulture,Sports,Science and Technology,Japan for financial support
文摘The micro-ring like structured zinc oxide(ZnO) film was deposited on SnO_2: F coated glass substrate by sol-gel dip-coating technique with 1.0 g polyethylene glycol(PEG) content. The surface morphology of micro-ring structured ZnO film has been confirmed by the scanning electron microscope. This ZnO film is used to fabricate the solar cell with the help of ruthenium based dye and carbon counter electrode. The photoelectric and incident photon-to-current conversion efficiency was 1.17% and 48.4%, respectively. The DSC results have been compared with ZnO films prepared without PEG contents.
基金the support of the National Natural Science Foundation of China under grant No. 20673141 the National Basic Research Program of China (973 Program) under grant No. 2006CB202606 the National High Technology Research and Development Program (863 Program) under grant No. 2006AA03Z341 and the 100-Talents Project of Chinese Academy of Sciences.
文摘Dye-sensitized solar cell (DSC) consists a combination of several different materials: photoanodes with nanoparticulated semiconductors, sensitizers, electrolytes and counter electrodes (CEs). Each materials performs specific task for the conversion of solar energy into electricity. The main function of CE is to transfer electrons to the redox electrolyte and regenerate iodide ion. The work of CE is mainly focused on the studies of the kinetic performance and stability of the traditional CEs to improve the overall efficiency of DSC, seeking novel design concepts or new materials. In this review, the development and research progress of different CE materials and their electrochemical performance, and the problems are discussed.
基金supported by the Major State Basic Research Development Program of China (No.2006CB202605)the National Natural Science Foundation of China (No.50473055)
文摘The ZnO-modified TiO2 electrode was prepared by adding Zn(CH3COO)2·2H2O to the TiO2 colloid during the sol-gel production process, and was used in dye-sensitized solar cells (DSCs). The open circuit voltage (Voc) and fill factor (if) of the cells were improved sig- nificantly. The performances of the ZnO-modified TiO2 electrode such as dark current, transient photocurrent, impedance, absorption spectra, and fiat band potential (Vfb) were investigated. It is found that the interface charge recombination impedance increases and Vfb shifts about 200 mV toward the cathodic potential. The effect mechanism of ZnO modification on the performance of DSCs may be that ZnO occupies the surface states of the TiO2 film.
基金supported by the National Basic Research Program of China (No. G2000028206)
文摘In order to improve the performance of the dye-sensitized solar cells based on ZnO films, ZnO nanoparticles of different sizes were prepared by two methods. Some surfactants were added into the particles to form three types of ZnO pastes. Electrodes of various thickness applied to dye-sensitized solar cell were prepared starting from each of those pastes by the screen-printing method. The performance of dye-sensitized solar cells was optimized via both the selected particle size and film thickness. The reason of the inefficiency was explained by the infrared and ultraviolet- visible absorption spectra.
基金financial supports from the National Natural Science Foundation of China(21503202,61604143,51362031)Shandong Provincial Natural Science Foundation(JQ201714)and Fundamental Research Funds for the Central Universities(201762018)
文摘Development of cost-effective and robust counter electrodes(CEs) is a persistent objective for highefficiency dye-sensitized solar cells(DSSCs). To achieve this goal, we present here the hydrothermal synthesis of well-aligned Ni Pt alloy CEs, which is templated by ZnO nanowires and nanosheets. The preliminary results demonstrate that Ni Pt alloy electrodes are featured by increased charge-transfer processes and electrocatalytic activity in comparison with expensive Pt CE, yielding power conversion efficiencies of 8.29% and 7.41% in corresponding DSSCs with Ni Pt nanowire and nanosheet alloy CEs, respectively. Additionally, the Ni Pt alloy CEs also display extraordinary dissolution-resistant ability when suffering longterm utilization in liquid-junction DSSCs.
基金This work was supported by the National Natural Science Foundation of China (No. 59773011).
文摘The photosensitive initiating system composed of 7-diethylamino-3-(2'-benzimidazolyl)coumarin dye (DEDC) and diphenyliodonium hexafluorophosphate (DIHP) which act as the sensitizer and the initiator respectively, can be used to initiate the polymerization of methyl methacrylate (MMA). The results showed that when exposed to visible light, coumarin dye/iodonium salt undergoes quick electron transfer from DEDC to DIHP and free radicals are produced. The visible light photoinduced reaction between DEDC and DIHP is mainly through the excited singlet state of DEDC and thus it is a little sensitive to O-2. The influence of concentration of DEDC, DIHP and MMA on the rate of photopolymerization of MMA was also investigated.
基金supported by the National Natural Science Foundation of China (Nos. 21273026 and 21572028) for their financial supportsupported by the Fundamental Research Funds for the Central Universities (DUT15LK37)the Outstanding Young Scholars Development Growth Plan of universities in Liaoning Province (LJQ2015027)
文摘New metal-free organic dye sensitizers containing mono-triphenylamine or bis-triphenylamine as the electron donor, a thiophene as the π-conjugated system, and a cyanoacrylic acid moiety as the electron acceptor were synthesized. The optical and electrochemical properties of the dyes were investigated,and their performance as sensitizers in solar cells was evaluated. Dye-sensitized solar cells based on dye containing bis-triphenylamine as the electron donor produced a photon-to-current conversion efficiency of 6.06%(Jsc = 14.21 m A/cm;, Voc = 0.62 V, ff = 0.69) under 100 m W/cm;simulated AM 1.5 G solar irradiation(100 m W/cm;).
文摘Titanium tetrachloride (TiCl4) treatment was employed to TiO2 coating deposited on fluoride-doped tin oxide (FTO) conducting glass and indium oxide doped tin oxide (ITO) conducting glass, respectively. The nano-crystalline TiO2 coating was deposited using a composite powder composed of polyethylene glycol (PEG) and 25 nm TiO2 particles by vacuum cold spraying (VCS) process. A commercial N-719 dye was used to adsorb on the surface of TiO2 coating to prepare TiO2 electrode, which was applied to assemble dye-sensitized solar cell (DSC). The cell performance was measured under simulated solar light at an intensity of 100 mW·cm-2. Results show that with an FTO substrate the DSC composed of a VCS TiO2 electrode untreated by TiCl4 gives a short-circuit current density of 13.1 mA·cm-2 and an open circuit voltage of 0.60 V corresponding to an overall conversion efficiency of 4.4%. It is found that after TiCl4 treatment to the VCS TiO2 electrode with an FTO substrate, the short circuit current density of the cell increases by 31%, the open-circuit voltage increases by 60 mV and a higher conversion yield of 6.5% was obtained. However, when an ITO substrate is used to deposit TiO2 coating by VCS, after TiCl4 treatment, the conversion efficiency of the assembled cell reduces slightly due to corrosion of the conducting layer on the ITO glass by TiCl4.
基金the support provided by the National High Technology Research and Development Program 863 (No.2006AA05Z417)Science and Technology Platform Construction Project of Dalian (2010-354)+4 种基金the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (No.2013-70)‘‘Shu Guang’’ project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (No.13SG55)National Natural Science Foundation of China (NSFC) (No.61376009)Science and Technology Commission of Shanghai Municipality (No.14YF1410500)Shanghai Young Teacher Supporting Foundation (No.ZZEGD14011)
文摘A bi-layer photoanode for dye-sensitized solar cell(DSSC) was fabricated, in which TiO_2 hollow spheres(THSs) were designed as a scattering layer and P25/multi-walled carbon nanotubes(MWNTs) as an under-layer. The THSs were synthesized by a sacrifice template method and showed good light scattering ability as an over-layer of the photoanode. MWNTs were mixed with P25 to form an under-layer of the photoanode to improve the electron transmission ability of the photoanode. The power conversion efficiency of this kind of DSSC with bi-layer was enhanced to 5.13 %,which is 14.25 % higher than that of pure P25 DSSC.Graphical Abstract A bi-layer composite photoanode based on P25/MWNTs-THSs with improved light scattering and electron transmission, which will provide a new insight into fabrication and structure design of highly efficient dyesensitized solar cells.
基金Supported by the National Natural Science Foundation of China(No.51502224)the Fundamental Research Funds for the Central Universities(Wuhan University of Technology,WUT)(No.2015IVA052)+1 种基金Students Innovation and Entrepreneurship Training Program(No.20151049701026)the Natural Science Foundation of Hubei Province in China(No.2016CFB118)
文摘Tungsten doped(W-doped) TiO_2 mesoporous nanobeads, possessing high surface area and superior scattering effect, were used for photoanode preparation. The W-doping would induce a positive shift of the TiO_2 conduction band, and enhance the driving force for electron injection and collection efficiencies. The electrochemical impedance spectra indicated a retarded charge recombination and increased electron diffusion length after W-doping. By fine-tuning the W-doping concentration to 0.25%, aqueous DSCs produced a significant improved the open circuit voltage of 712 mV and a short circuit current of 7.05 mA·cm^(-2), leading to an overall increased power conversion efficiency of 3.40% at 1 000 W·m^(-2) simulated irradiation, which is roughly 25% enhancement compared to that without W-doping photoanode.
基金Project supported by the Program for New Century Excellent Talents in University,China (Grant No. NCET-10-0291)the Fundamental Research Funds for the Central Universities,China (Grant Nos. ZYGX2009X005 and ZYGX2010J031)+1 种基金the Startup Research Project of University of Electronic Science and Technology of China (Grant No.Y02002010301041)the National Natural Science Foundation of China (Grant Nos. 50832007,11074285,and 51202022)
文摘Platinum nanoparticles (PtNPs)/graphene composite materials are synthesized by a controlled chemical reduction of H2PtC16 on graphene sheets. The electrocatalytic activity of a PtNPs/graphene composite counter electrode for a dye-sensitized solar cell (DSSC) is investigated. The results demonstrate that the PtNPs/graphene composite has high electrocatalytic activity for the dye-sensitized solar cell. The cell employing PtNPs (1.6 wt%)/graphene counter electrode reaches an conversion efficiency (η) of 3.89% upon the excitation of 100 mW/cm2 AM 1.5 white light, which is comparable to that of the cell with a Pt-film counter electrode (7 = 3.76%). It suggests that one can use only 14% Pt content of the conventional Pt-film counter electrode to obtain a comparable conversion efficiency. It may be possible to obtain a high performance DSSC using the PtNPs/graphene composite with a very low Pt content as a counter electrode due to its simplicity, low cost, and large scalability.
基金funded by Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,under grant No.(DF-779-130-1441)DSR technical and financial support.
文摘The exploration of polymer electrolyte in the field of dye sensitized solar cell(DSSC) can contribute to increase the invention of renewable energy applications. In the present work, the influence of imidazole on the poly(vinylidene fluoride)(PVDF)–poly(methyl methacrylate)(PMMA)–Ethylene carbonate(EC)–KI–I2 polymer blend electrolytes has been evaluated. The different weight percentages of imidazole added into polymer blend electrolytes have been prepared by solution casting. The prepared films were characterized by Fourier transform infrared spectroscopy(FTIR), X-ray diffraction(XRD), thermogravimetric analysis(TGA), UV–visible spectra, photoluminescence spectra and impedance spectroscopy. The surface roughness texture of the film was analyzed by atomic force microscopy(AFM). The ionic conductivity of the optimized polymer blend electrolyte was determined by impedance measurement, which is 1.95 × 10-3 S·cm-1 at room temperature. The polymer electrolyte containing 40 wt% of imidazole content exhibits the highest photo-conversion efficiency of 3.04%under the illumination of 100 m W·cm-2. Moreover, a considerable enhancement in the stability of the DSSC device was demonstrated.
基金supported by the Program for Innovation Research of Science in Harbin Institute of Technology(PIRS of HIT nos.A201418 and Q201508)
文摘In order to develop a new strategy to deposit nano-particle sized water oxidation catalyst based on earth abundant element to the photoanode in a photoelectrochemical cell for water splitting, Co;O;as water oxidation catalyst was prepared and subsequently modified by 3-aminopropyltriethoxysilane. The amino functionalized Co;O;catalyst was carefully characterized and then integrated to the ruthenium dye sensitized photoelectrode through fast Schiff base reaction. Cyclic voltammetry experiments in the dark confirmed that the modified Co;O;catalyst was still active toward water oxidation, which could be initiated by oxidation of the ruthenium photosensitizer. Under visible light irradiation, incorporation of the modified Co;O;catalyst resulted in dramatic enhancement of the transient photocurrent density for the photoanode, which was 8 times higher than that of without Co;O;catalyst.