In this paper,tannic acid(TA)and Fe~(3+)were added to form a layer of metal-polyphenol network structure on the surface of the nanoparticles which were fabricated by zein and carbon quantum dots(CQDs)encapsulating phl...In this paper,tannic acid(TA)and Fe~(3+)were added to form a layer of metal-polyphenol network structure on the surface of the nanoparticles which were fabricated by zein and carbon quantum dots(CQDs)encapsulating phlorotannins(PTN).pH-Responsive nanoparticles were prepared successfully(zein-PTN-CQDs-Fe-~Ⅲ).Further,the formation of composite nanoparticles was confirmed by a series of characterization methods.The zeta-potential and Fourier transform infrared spectroscopy data proved that electrostatic interaction and hydrogen bonding are dominant forces to form nanoparticles.The encapsulation efficiency(EE)revealed that metal-polyphenol network structure could improve the EE of PTN.Thermogravimetric analysis and differential scanning calorimetry experiment indicated the thermal stability of zein-PTN-CQDs-Fe~Ⅲnanoparticles increased because of metal-polyphenol network structure.The pH-responsive nanoparticles greatly increased the release rate of active substances and achieved targeted release.展开更多
Manganese oxide hollow spheres were prepared by a novel and facile approach using pH- responsive microgels as templates. The final products were thoroughly characterized with X-ray powder diffraction, thermogravimetri...Manganese oxide hollow spheres were prepared by a novel and facile approach using pH- responsive microgels as templates. The final products were thoroughly characterized with X-ray powder diffraction, thermogravimetric analysis, scanning electron microscopy, Fourier transform infrared, and transmission electron microscopy. The results reveal that the shell thickness of manganese oxide hollow spheres increased with the dosage of KMnO4, which implies that a controllable and feasible strategy for manganese oxide hollow spheres prepa- ration has been established. Further studies on the microgels template showed some of them had an irreversible swelling/deswelling transition due to the uneven cross-link extent. Based on the results, a probable formation mechanism for the hollow spheres was proposed.展开更多
A pH-responsive conjugate based 10-hydroxycamptothecin-thiosemicarbazide-polyethene glycol 2000 (10-HCPT-hydro-PEG) nano-micelles were prepared in our previous study. In the present study, ultra-performance liquid chr...A pH-responsive conjugate based 10-hydroxycamptothecin-thiosemicarbazide-polyethene glycol 2000 (10-HCPT-hydro-PEG) nano-micelles were prepared in our previous study. In the present study, ultra-performance liquid chromatography (UPLC-MS) method is developed to investigate its pharmacokinetics and biodistribution in tumor bearing mice. The results demonstrated that the conjugate circulated for a much longer time in the blood circulation system than commercial 10-HCPT injection, and bioavailability was significantly improved compared with 10-HCPT. In vivo biodistribution study showed that the conjugate could enhance the targeting and residence time in tumor site.展开更多
In the fight against cancer, controlled drug delivery systems have emerged to enhance the therapeutic efficacy and safety of anti-cancer drugs. Among these systems, mesoporous silica nanoparticles (MSNs) with a func...In the fight against cancer, controlled drug delivery systems have emerged to enhance the therapeutic efficacy and safety of anti-cancer drugs. Among these systems, mesoporous silica nanoparticles (MSNs) with a functional surface possess obvious advantages and were thus rapidly developed for cancer treatment. Many stimuli-responsive materials, such as nanopartides, polymers, and inorganic materials, have been applied as caps and gatekeepers to control drug release from MSNs. This review presents an overview of the recent progress in the production of pH-responsive MSNs based on the pH gradient between normal tissues and the tumor microenvironment. Four main categories of gatekeepers can respond to acidic conditions. These categories will be described in detail.展开更多
Converting polyethylene terephthalate(PET)wastes to its monomer and valuable chemicals via ecofriendly chemical method is still a challenge task.Previously,phase transfer catalysts used for alkaline hydrolysis were so...Converting polyethylene terephthalate(PET)wastes to its monomer and valuable chemicals via ecofriendly chemical method is still a challenge task.Previously,phase transfer catalysts used for alkaline hydrolysis were soluble in reaction media and hardly separated after reaction.Here,we reported several pH-responsive catalysts combined alkyl quaternary ammonium units with heteropolyacid anion for achieving stepwise product/catalyst separation and catalyst recycling.The properties of homogeneous/heterogeneous transfer behavior allow catalyst to be easily separated from reaction media by adjusting of pH value.Among them,[C_(16)H_(33)N(CH_(3))_(3)]_(3)PW_(12)O_(40)(abbreviated as[CTA]_(3)PW)exhibits the highest activity and the most suitable pH responsive values.Such a pH triggered switchable catalytic system not only shows good performance for depolymerization of pure PET,but also some real PET wastes such as coloured trays and PE/PET complex films could be completely degraded into terephthalic acid.Additionally,the reaction kinetics and activation energy of PET alkaline hydrolysis also studied with and without pH-responsive[CTA]_(3)PW.展开更多
Due to the negative roles of tumor microenvironment(TME)in compromising therapeutic responses of various cancer therapies,it is expected that modulation of TME may be able to enhance the therapeutic responses during c...Due to the negative roles of tumor microenvironment(TME)in compromising therapeutic responses of various cancer therapies,it is expected that modulation of TME may be able to enhance the therapeutic responses during cancer treatment.Herein,we develop a concise strategy to prepare pH-responsive nanoparticles via the CaCO3-assisted double emulsion method,thereby enabling effective co-encapsulation of both doxorubicin(DOX),an immunogenic cell death(ICD)inducer,and alkylated NLG919(aNLG919),an inhibitor of indoleamine 2,3-dioxygenase 1(IDO1).The obtained DOX/aNLG919-loaded CaCO3 nanoparticles(DNCaNPs)are able to cause effective ICD of cancer cells and at the same time restrict the production of immunosuppressive kynurenine by inhibiting IDO1.Upon intravenous injection,such DNCaNPs show efficient tumor accumulation,improved tumor penetration of therapeutics and neutralization of acidic TME.As a result,those DNCaNPs can elicit effective anti-tumor immune responses featured in increased density of tumor-infiltrating CD8+cytotoxic T cells as well as depletion of immunosuppressive regulatory T cells(Tregs),thus effectively suppressing the growth of subcutaneous CT26 and orthotopic 4T1 tumors on the Balb/c mice through combined chemotherapy&immunotherapy.This study presents a compendious strategy for construction of pH-responsive nanoparticles,endowing significantly enhanced chemo-immunotherapy of cancer by overcoming the immunosuppressive TME.展开更多
Targeted photodynamic therapy(TPDT)based on the photosensitizers responsive for tumor micr oenvironment is promising because of the better anti-tumor effect and less phototoxicity against normal tissue than the tradit...Targeted photodynamic therapy(TPDT)based on the photosensitizers responsive for tumor micr oenvironment is promising because of the better anti-tumor effect and less phototoxicity against normal tissue than the traditional PDT.Nanoparticle based stimuli responsive photo-sensitizers have been widely explored for TPDT.Based on the acidic microenvironments in solid tumors,an ultrasmall pH-responsive silicon phthalocyanine nanomicelle(PSN)(smaller than 10 nm)was designed for selective PDT of tumor.PSN had high drug loading efficacy(more than 28%)and exhibited morphological transitions,enhanced fuorescence and improved singlet∞x-ygen yield under acidic environments.PSN was renal dlearable and could rapidly accumulate and be retained at tumor sites,achieving a tumor-inhibiting ffect better than phthalocyanine micelle without pH response.Tumors of mice treated with PSN for PDT were completely ablated without recurrence.Thus,we have developed a phthalocyanine-based pH responsive micelle with excellent tumor targeting ability,which is expected to realize the selective PDT of tumor.展开更多
Preparation of polymer microspheres from naturally occurring resource is a challenge.Here,a rosin-based polyol(RAG)was used to prepare polyurethane resin(RPU)firstly,and then act as both self-assembled precursor and e...Preparation of polymer microspheres from naturally occurring resource is a challenge.Here,a rosin-based polyol(RAG)was used to prepare polyurethane resin(RPU)firstly,and then act as both self-assembled precursor and emulsifier,rosin based polyurethane microspheres(RPUMs)were prepared.In the process of self-emulsification,the RPU formed vesicles by self-assembly.The outer shell of the vesicle consisted of hydrophilic segments,while the inner shell contained the hydrophobic phase.After cross-linking the RPU and removal of the solvent in the core,the porous-hollow microspheres with pH-sensitive were obtained.The microspheres were characterized by optical microscope(OM),scanning electron microscopy(SEM)and transmission electron microscope(TEM).The effect of type and amount of the hydrophilic chain extender,and solvent on the morphology,particle size and distribution,and buffer volume of the microspheres were determined.The best conditions for synthetic RPUMs were as follows:n_(NCO)/n_(OH)=1,n_(RAG):n_(1-(2-hydroxyethyl)piperazine)=4:6,with azodiisobutyronitrile level of 1.0 wt.%,based on reactive monomers,mixing speed of both emulsification and polymerization at 400 r·min-1,the RPUMs synthesized had porous-hollow structure with a buffer volume of 1.6 mL.展开更多
Novel pH-responsive membranes were prepared by blending pH-responsive amphiphilic copolymers with polyethersulfone(PES) via a nonsolvent-induced phase separation(NIPS) technique. The amphiphilic copolymers bearing Plu...Novel pH-responsive membranes were prepared by blending pH-responsive amphiphilic copolymers with polyethersulfone(PES) via a nonsolvent-induced phase separation(NIPS) technique. The amphiphilic copolymers bearing Pluronic F127 and poly(methacrylic acid)(PMAA) segments, abbreviated as PMAA n–F127–PMAA n,were synthesized by free radical polymerization. The physical and chemical properties of the blend membranes were evaluated by scanning electron microscopy(SEM), Fourier transform infrared(FTIR) spectrum, water contact angle, Zeta potential and X-ray photoelectron spectroscopy(XPS). The enrichment of hydrophilic PMAA segments on the membrane surfaces was attributed to surface segregation during the membrane preparation process. The blend membranes had signi ficant p H-responsive properties due to the conformational changes of surface-segregated PMAA segments under different pH values of feed solutions. Fluxes of the blend membranes were larger at low p H values of feed solutions than that at high pH values. The pH-responsive ability of the membranes was enhanced with the increase of the degree of PMAA near-surface coverage.展开更多
The hybrid carrier(HC)system rooted in the carrier fusion concept is gradually garnering attention.In this paper,we study the extended hybrid carrier(EHC)multiple access scheme to ensure reliable wireless communicatio...The hybrid carrier(HC)system rooted in the carrier fusion concept is gradually garnering attention.In this paper,we study the extended hybrid carrier(EHC)multiple access scheme to ensure reliable wireless communication.By employing the EHC modulation,a power layered multiplexing framework is realized,which exhibits enhanced interference suppression capability owing to the more uniform energy distribution design.The implementation method and advantage mechanism are explicated respectively for the uplink and downlink,and the performance analysis under varying channel conditions is provided.In addition,considering the connectivity demand,we explore the non-orthogonal multiple access(NOMA)method of the EHC system and develop the EHC sparse code multiple access scheme.The proposed scheme melds the energy spread superiority of EHC with the access capacity of NOMA,facilitating superior support for massive connectivity in high mobility environments.Simulation results have verified the feasibility and advantages of the proposed scheme.Compared with existing HC multiple access schemes,the proposed scheme exhibits robust bit error rate performance and can better guarantee multiple access performance in complex scenarios of nextgeneration communications.展开更多
Herein,the co-pyrolysis reaction characteristics of corn straw(CS)and bituminous coal in the presence of ilmenite oxygen carriers(OCs)are investigated via thermogravimetry coupled with mass spectrometry.The results re...Herein,the co-pyrolysis reaction characteristics of corn straw(CS)and bituminous coal in the presence of ilmenite oxygen carriers(OCs)are investigated via thermogravimetry coupled with mass spectrometry.The results reveal that the participation of OCs weakens the devolatilization intensity of co-pyrolysis.When the CS blending ratio is<50%,the mixed fuel exhibits positive synergistic effects.The fitting results according to the Coats-Redfern integral method show that the solid-solid interaction between OCs and coke changes the reaction kinetics,enhancing the co-pyrolysis reactivity at the high-temperature zone(750-950C).The synergistic effect is most prominent at a 30%CS blending ratio,with copyrolysis activation energy in the range of 26.35-40.57 kJ·mol^(-1).展开更多
Objective:Hemophilia carriers(HCs),who are heterozygous for mutations in the clotting factor VIII/clotting factor IX gene(F8 or F9),may have a wide range of clotting factor levels,from very low,similar to afflicted ma...Objective:Hemophilia carriers(HCs),who are heterozygous for mutations in the clotting factor VIII/clotting factor IX gene(F8 or F9),may have a wide range of clotting factor levels,from very low,similar to afflicted males,to the upper limit of normal,and may experience mental health issues.The purpose of this study was to provide genetic information on mothers of hemophilia patients and to understand the clotting factor activity and phenotype of HCs.Additionally,we aimed to investigate the mental health status of HCs in China.Methods:A total of 127 hemophilia mothers,including 93 hemophilia A(HA)mothers and 34 hemophilia B(HB)mothers,were enrolled in this study.Long distance PCR,multiplex PCR,and Sanger sequencing were used to analyze mutations in F8 or F9.Coagulation factor activity was detected by a one-stage clotting assay.The Symptom Checklist 90(SCL-90,China/Mandarin version)was given to HCs at the same time to assess their mental health.Results:A total of 90.6%of hemophilia mothers were diagnosed genetically as carriers,with inversion in intron 22 and missense mutations being the most common mutation types in HA and HB carriers,respectively.The median clotting factor level in carriers was 0.74 IU/mL(ranging from 0.09 to 1.74 IU/mL)compared with 1.49 IU/mL(ranging from 0.93 to 1.89 IU/mL)in noncarriers,of which 14.3%of HCs had clotting factor levels of 0.40 IU/mL or below.A total of 53.8%(7/13)of HA carriers with low clotting factor levels(less than 0.50 IU/mL)had a history of bleeding,while none of the HB carriers displayed a bleeding phenotype.The total mean score and the global severity index of the SCL-90 for surveyed HCs were 171.00(±60.37)and 1.78(±0.59),respectively.A total of 67.7%of the respondents had psychological symptoms,with obsessive-compulsive disorder being the most prevalent and severe.The pooled estimates of all nine factors were significantly higher than those in the general population(P<0.05).Conclusions:The detection rate of gene mutations in hemophilia mothers was 90.6%,with a median clotting factor level of 0.74 IU/mL,and 14.3%of HCs had a clotting factor level of 0.40 IU/mL or below.A history of bleeding was present in 41.2%of HCs with low clotting factor levels(less than 0.50 IU/mL).Additionally,given the fragile mental health status of HCs in China,it is critical to develop efficient strategies to improve psychological well-being.展开更多
Quasi-2D Dion-Jacobson(DJ)tin halide perovskite has attracted much attention due to its elimination of Van der Waals gap and enhanced environmental stability.However,the bulky organic spacers usually form a natural qu...Quasi-2D Dion-Jacobson(DJ)tin halide perovskite has attracted much attention due to its elimination of Van der Waals gap and enhanced environmental stability.However,the bulky organic spacers usually form a natural quantum well structure,which brings a large quantum barrier and poor film quality,further limiting the carrier transport and device performance.Here,we designed three organic spacers with different chain lengths(ethylenediamine(EDA),1,3-propanediamine(PDA),and 1,4-butanediamine(BDA))to investigate the quantum barrier dependence.Theoretical and experimental characterizations indicate that EDA with short chain can reduce the lattice distortion and dielectric confinement effect,which is beneficial to the effective dissociation of excitons and the inhibition of trap-free non-radiative relaxation.In addition,EDA cation shows strong interaction with the inorganic octahedron,realizing large aggregates in precursor solution and high-quality films with improved structural stability.Furthermore,femtosecond transient absorption proves that EDA cations can also weaken the formation of small n-phases with large quantum barrier to achieve effective carrier transport between different nphases.Finally,the quasi-2D DJ(EDA)FA_(9)Sn_(10)I_(31)solar cells achieves a 7.07%power conversion efficiency with good environment stability.Therefore,this work sheds light on the regulation of the quantum barrier and carrier transport through the chain length of organic spacer for qua si-2D DJ lead-free perovskites.展开更多
Cu2ZnSn(S,Se)4(CZTSSe)solar cells have resource distribution and economic advantages.The main cause of their low efficiency is carrier loss resulting from recombination of photo-generated electron and hole.To overcome...Cu2ZnSn(S,Se)4(CZTSSe)solar cells have resource distribution and economic advantages.The main cause of their low efficiency is carrier loss resulting from recombination of photo-generated electron and hole.To overcome this,it is important to understand their electron-hole behavior characteristics.To determine the carrier separation characteristics,we measured the surface potential and the local current in terms of the absorber depth.The elemental variation in the intragrains(IGs)and at the grain boundaries(GBs)caused a band edge shift and bandgap(Eg)change.At the absorber surface and subsurface,an upward Ec and Ev band bending structure was observed at the GBs,and the carrier separation was improved.At the absorber center,both upward Ec and Ev and downward Ec-upward Ev band bending structures were observed at the GBs,and the carrier separation was degraded.To improve the carrier separation and suppress carrier recombination,an upward Ec and Ev band bending structure at the GBs is desirable.展开更多
Biomass,recognized as renewable green coal,is pivotal for energy conservation,emission reduction,and dualcarbon objectives.Chemical looping gasification,an innovative technology,aims to enhance biomass utilization eff...Biomass,recognized as renewable green coal,is pivotal for energy conservation,emission reduction,and dualcarbon objectives.Chemical looping gasification,an innovative technology,aims to enhance biomass utilization efficiency.Using metal oxides as oxygen carriers regulates the oxygen-to-fuel ratio to optimize synthesis product yields.This review examines various oxygen carriers and their roles in chemical looping biomass gasification,including natural iron ore types,industrial by-products,cerium oxide-based carriers,and core-shell structures.The catalytic,kinetic,and phase transfer properties of iron-based oxygen carriers are analyzed,and their catalytic cracking capabilities are explored.Molecular interactions are elucidated and system performance is optimized by providing insights into chemical looping reaction mechanisms and strategies to improve carrier efficiency,along with discussing advanced techniques such as density functional theory(DFT)and reactive force field(ReaxFF)molecular dynamics(MD).This paper serves as a roadmap for advancing chemical looping gasification towards sustainable energy goals.展开更多
Perovskite oxides has been attracted much attention as high-performance oxygen carriers for chemical looping reforming of methane,but they are easily inactivated by the presence of trace H_(2)S.Here,we propose to modu...Perovskite oxides has been attracted much attention as high-performance oxygen carriers for chemical looping reforming of methane,but they are easily inactivated by the presence of trace H_(2)S.Here,we propose to modulate both the activity and resistance to sulfur poisoning by dual substitution of Mo and Ni ions with the Fe-sites of LaFeO_(3)perovskite.It is found that partial substitution of Ni for Fe substantially improves the activity of LaFeO_(3)perovskite,while Ni particles prefer to grow and react with H_(2)S during the long-term successive redox process,resulting in the deactivation of oxygen carriers.With the presence of Mo in LaNi_(0.05)Fe_(0.95)O_(3−σ)perovskite,H_(2)S preferentially reacts with Mo to generate MoS_(2),and then the CO_(2)oxidation can regenerate Mo via removing sulfur.In addition,Mo can inhibit the accumulation and growth of Ni,which helps to improve the redox stability of oxygen carriers.The LaNi_(0.05)Mo_(0.07)Fe_(0.88)O_(3−σ)oxygen carrier exhibits stable and excellent performance,with the CH_(4)conversion higher than 90%during the 50 redox cycles in the presence of 50 ppm H_(2)S at 800℃.This work highlights a synergistic effect in the perovskite oxides induced by dual substitution of different cations for the development of high-performance oxygen carriers with excellent sulfur tolerance.展开更多
Investigating lattice vibrations through Raman spectroscopy is a crucial method for studying crystalline materials.Carriers can interact with lattices and influence lattice vibrations;thus,it is feasible to study the ...Investigating lattice vibrations through Raman spectroscopy is a crucial method for studying crystalline materials.Carriers can interact with lattices and influence lattice vibrations;thus,it is feasible to study the effect of photo-generated carriers on phonons by analyzing changes in the Raman spectra of semiconductors.Rutile is one of the predominant crystalline phases of TiO_(2),which is a widely utilized metal oxide semiconductor.In this work,rutile TiO_(2) is coated on a thinned optical fiber to concentrate ultraviolet light energy within the material,thereby enhancing the generation of carriers and amplifying the changes in the Raman spectra.A Raman detection laser with a wavelength of 532 nm is utilized to collect the Raman spectra of rutile TiO_(2) during irradiation.Using this setup,the impact of photo-generated carriers on the phonons corresponding to Raman vibrational modes is researched.The localization and non-radiative recombination of photo-generated carriers contribute to a reduction in both the frequencies and lifetimes of phonons.This work provides a novel approach to researching the effect of carriers on phonons.展开更多
We measure the time-resolved terahertz spectroscopy of GeSn thin film and studied the ultrafast dynamics of its photo-generated carriers.The experimental results show that there are photo-generated carriers in GeSn un...We measure the time-resolved terahertz spectroscopy of GeSn thin film and studied the ultrafast dynamics of its photo-generated carriers.The experimental results show that there are photo-generated carriers in GeSn under femtosecond laser excitation at 2500 nm,and its pump-induced photoconductivity can be explained by the Drude–Smith model.The carrier recombination process is mainly dominated by defect-assisted Auger processes and defect capture.The firstand second-order recombination rates are obtained by the rate equation fitting,which are(2.6±1.1)×10^(-2)ps^(-1)and(6.6±1.8)×10^(-19)cm^(3)·ps^(-1),respectively.Meanwhile,we also obtain the diffusion length of photo-generated carriers in GeSn,which is about 0.4μm,and it changes with the pump delay time.These results are important for the GeSn-based infrared optoelectronic devices,and demonstrate that Ge Sn materials can be applied to high-speed optoelectronic detectors and other applications.展开更多
Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for converting ethane to ethylene.In the current study MeO/LaCoO_(3)(MeO=Fe_(2)O_(3),NiO or Co_(2)O_(3))composite metal oxides w...Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for converting ethane to ethylene.In the current study MeO/LaCoO_(3)(MeO=Fe_(2)O_(3),NiO or Co_(2)O_(3))composite metal oxides were prepared via citrate gel and impregnation methods,and used as oxygen carriers for CL-ODH.X-ray diffraction results indicated that all oxygen carriers had a perovskite structure even after eight redox cycles.Under a reaction temperature of 650°C,a reaction pressure of 0.1 MPa,and a weight hourly space velocity(WHSV)of 7500 mL/(g·h),ethane conversion over Co_(2)O_(3)/LaCoO_(3) reached 100%and ethylene selectivity reached 60%,both of which were better than corresponding values attained over Fe_(2)O_(3)/LaCoO_(3) and NiO/LaCoO_(3).Ethylene selectivity remained stable for 80 cycles over Co_(2)O_(3)/LaCoO_(3),then decreased gradually after 80 cycles.X-ray photoelectron spectroscopy results and evaluation results indicated that lattice oxygen and O_(2)2-had a direct relationship with ethane conversion and ethylene selectivity.Co_(2)O_(3)/LaCoO_(3) exhibited a strong capacity to release and absorb oxygen,mainly due to interaction between Co_(2)O_(3) and LaCoO_(3).展开更多
A Diesel Particulate Filter(DPF)is a critical device for diesel engine exhaust products treatment.When using active-regeneration purification methods,on the one hand,a spatially irregular gas flow can produce relative...A Diesel Particulate Filter(DPF)is a critical device for diesel engine exhaust products treatment.When using active-regeneration purification methods,on the one hand,a spatially irregular gas flow can produce relatively high local temperatures,potentially resulting in damage to the carrier;On the other hand,the internal temperature field can also undergo significant changes contributing to increase this risk.This study explores the gas flow uniformity in a DPF carrier and the related temperature behavior under drop-to-idle(DTI)condition by means of bench tests.It is shown that the considered silicon carbide carrier exhibits good flow uniformity,with a temperature deviation of no more than 2%with respect to the same radius measurement point at the outlet during the regeneration stage.In the DTI test,the temperature is relatively high within r/2 near the outlet end,where the maximum temperature peak occurs,and the maximum radial temperature gradient is located between r/2 and the edge.Both these quantities grow as the soot load increases,thereby making the risk of carrier burnout greater.Finally,it is shown that the soot load limit of the silicon carbide DPF can be extended to 11 g/L,which reduces the frequency of active regeneration by approximately 40%compared to a cordierite DPF.展开更多
基金supported by the National Key R&D Program of China (2018YFD0901106)the Wenzhou Major Science and Technology Project (ZN2021002)the Ningbo“3315 series program”for high-level talents (2020B-34-G)。
文摘In this paper,tannic acid(TA)and Fe~(3+)were added to form a layer of metal-polyphenol network structure on the surface of the nanoparticles which were fabricated by zein and carbon quantum dots(CQDs)encapsulating phlorotannins(PTN).pH-Responsive nanoparticles were prepared successfully(zein-PTN-CQDs-Fe-~Ⅲ).Further,the formation of composite nanoparticles was confirmed by a series of characterization methods.The zeta-potential and Fourier transform infrared spectroscopy data proved that electrostatic interaction and hydrogen bonding are dominant forces to form nanoparticles.The encapsulation efficiency(EE)revealed that metal-polyphenol network structure could improve the EE of PTN.Thermogravimetric analysis and differential scanning calorimetry experiment indicated the thermal stability of zein-PTN-CQDs-Fe~Ⅲnanoparticles increased because of metal-polyphenol network structure.The pH-responsive nanoparticles greatly increased the release rate of active substances and achieved targeted release.
文摘Manganese oxide hollow spheres were prepared by a novel and facile approach using pH- responsive microgels as templates. The final products were thoroughly characterized with X-ray powder diffraction, thermogravimetric analysis, scanning electron microscopy, Fourier transform infrared, and transmission electron microscopy. The results reveal that the shell thickness of manganese oxide hollow spheres increased with the dosage of KMnO4, which implies that a controllable and feasible strategy for manganese oxide hollow spheres prepa- ration has been established. Further studies on the microgels template showed some of them had an irreversible swelling/deswelling transition due to the uneven cross-link extent. Based on the results, a probable formation mechanism for the hollow spheres was proposed.
基金supported by the Major National Scientific Research Projects (2015CB932103)
文摘A pH-responsive conjugate based 10-hydroxycamptothecin-thiosemicarbazide-polyethene glycol 2000 (10-HCPT-hydro-PEG) nano-micelles were prepared in our previous study. In the present study, ultra-performance liquid chromatography (UPLC-MS) method is developed to investigate its pharmacokinetics and biodistribution in tumor bearing mice. The results demonstrated that the conjugate circulated for a much longer time in the blood circulation system than commercial 10-HCPT injection, and bioavailability was significantly improved compared with 10-HCPT. In vivo biodistribution study showed that the conjugate could enhance the targeting and residence time in tumor site.
基金supported by the Chinese Natural Science Foundation Project (Grant No. 30970784 and 81171455)a National Distinguished Young Scholars Grant (Grant No. 31225009) from the National Natural Science Foundation of China+5 种基金the National Key Basic Research Program of China (Grant No. 2009CB930200)the Chinese Academy of Sciences (CAS) ‘Hundred Talents Program’ (Grant No. 07165111ZX)the CAS Knowledge Innovation Program, and the State HighTech Development Plan (Grant No. 2012AA020804)the ‘Strategic Priority Research Program’ of the Chinese Academy of Sciences (Grant No. XDA09030301)NIH/NIMHD 8 G12 MD007597USAMRMC W81XWH-10-1-0767 grants
文摘In the fight against cancer, controlled drug delivery systems have emerged to enhance the therapeutic efficacy and safety of anti-cancer drugs. Among these systems, mesoporous silica nanoparticles (MSNs) with a functional surface possess obvious advantages and were thus rapidly developed for cancer treatment. Many stimuli-responsive materials, such as nanopartides, polymers, and inorganic materials, have been applied as caps and gatekeepers to control drug release from MSNs. This review presents an overview of the recent progress in the production of pH-responsive MSNs based on the pH gradient between normal tissues and the tumor microenvironment. Four main categories of gatekeepers can respond to acidic conditions. These categories will be described in detail.
基金the support of the National Natural Science Foundation of China(22005276)。
文摘Converting polyethylene terephthalate(PET)wastes to its monomer and valuable chemicals via ecofriendly chemical method is still a challenge task.Previously,phase transfer catalysts used for alkaline hydrolysis were soluble in reaction media and hardly separated after reaction.Here,we reported several pH-responsive catalysts combined alkyl quaternary ammonium units with heteropolyacid anion for achieving stepwise product/catalyst separation and catalyst recycling.The properties of homogeneous/heterogeneous transfer behavior allow catalyst to be easily separated from reaction media by adjusting of pH value.Among them,[C_(16)H_(33)N(CH_(3))_(3)]_(3)PW_(12)O_(40)(abbreviated as[CTA]_(3)PW)exhibits the highest activity and the most suitable pH responsive values.Such a pH triggered switchable catalytic system not only shows good performance for depolymerization of pure PET,but also some real PET wastes such as coloured trays and PE/PET complex films could be completely degraded into terephthalic acid.Additionally,the reaction kinetics and activation energy of PET alkaline hydrolysis also studied with and without pH-responsive[CTA]_(3)PW.
基金partially supported by the National Natural Science Foundation of China(51802209,22077093,51761145041,51525203)the National Research Programs from Ministry of Science and Technology(MOST)of China(2016YFA0201200)+3 种基金the Natural Science Foundation of Jiangsu Province(BK20180848)the Jiangsu Social Development Project(BE2019658)Collaborative Innovation Center of Suzhou Nano Science and Technologythe 111 Program from the Ministry of Education of China.
文摘Due to the negative roles of tumor microenvironment(TME)in compromising therapeutic responses of various cancer therapies,it is expected that modulation of TME may be able to enhance the therapeutic responses during cancer treatment.Herein,we develop a concise strategy to prepare pH-responsive nanoparticles via the CaCO3-assisted double emulsion method,thereby enabling effective co-encapsulation of both doxorubicin(DOX),an immunogenic cell death(ICD)inducer,and alkylated NLG919(aNLG919),an inhibitor of indoleamine 2,3-dioxygenase 1(IDO1).The obtained DOX/aNLG919-loaded CaCO3 nanoparticles(DNCaNPs)are able to cause effective ICD of cancer cells and at the same time restrict the production of immunosuppressive kynurenine by inhibiting IDO1.Upon intravenous injection,such DNCaNPs show efficient tumor accumulation,improved tumor penetration of therapeutics and neutralization of acidic TME.As a result,those DNCaNPs can elicit effective anti-tumor immune responses featured in increased density of tumor-infiltrating CD8+cytotoxic T cells as well as depletion of immunosuppressive regulatory T cells(Tregs),thus effectively suppressing the growth of subcutaneous CT26 and orthotopic 4T1 tumors on the Balb/c mice through combined chemotherapy&immunotherapy.This study presents a compendious strategy for construction of pH-responsive nanoparticles,endowing significantly enhanced chemo-immunotherapy of cancer by overcoming the immunosuppressive TME.
基金supported by grants from projects of Interdisciplinary Research Foundation of HIT,the National Natural Science Foundation of China(No.82071980)the International Cooperation and Exchanges NSFC-PSF(No.31961143003)+1 种基金the State Key Program of National Natural Science of China(No.81930047)the National Project for Research and Development of Major Scientifc Instruments(No.81727803).
文摘Targeted photodynamic therapy(TPDT)based on the photosensitizers responsive for tumor micr oenvironment is promising because of the better anti-tumor effect and less phototoxicity against normal tissue than the traditional PDT.Nanoparticle based stimuli responsive photo-sensitizers have been widely explored for TPDT.Based on the acidic microenvironments in solid tumors,an ultrasmall pH-responsive silicon phthalocyanine nanomicelle(PSN)(smaller than 10 nm)was designed for selective PDT of tumor.PSN had high drug loading efficacy(more than 28%)and exhibited morphological transitions,enhanced fuorescence and improved singlet∞x-ygen yield under acidic environments.PSN was renal dlearable and could rapidly accumulate and be retained at tumor sites,achieving a tumor-inhibiting ffect better than phthalocyanine micelle without pH response.Tumors of mice treated with PSN for PDT were completely ablated without recurrence.Thus,we have developed a phthalocyanine-based pH responsive micelle with excellent tumor targeting ability,which is expected to realize the selective PDT of tumor.
基金The authors greatly acknowledge the financial support from the National Natural Science Foundation of China(No.51863007).
文摘Preparation of polymer microspheres from naturally occurring resource is a challenge.Here,a rosin-based polyol(RAG)was used to prepare polyurethane resin(RPU)firstly,and then act as both self-assembled precursor and emulsifier,rosin based polyurethane microspheres(RPUMs)were prepared.In the process of self-emulsification,the RPU formed vesicles by self-assembly.The outer shell of the vesicle consisted of hydrophilic segments,while the inner shell contained the hydrophobic phase.After cross-linking the RPU and removal of the solvent in the core,the porous-hollow microspheres with pH-sensitive were obtained.The microspheres were characterized by optical microscope(OM),scanning electron microscopy(SEM)and transmission electron microscope(TEM).The effect of type and amount of the hydrophilic chain extender,and solvent on the morphology,particle size and distribution,and buffer volume of the microspheres were determined.The best conditions for synthetic RPUMs were as follows:n_(NCO)/n_(OH)=1,n_(RAG):n_(1-(2-hydroxyethyl)piperazine)=4:6,with azodiisobutyronitrile level of 1.0 wt.%,based on reactive monomers,mixing speed of both emulsification and polymerization at 400 r·min-1,the RPUMs synthesized had porous-hollow structure with a buffer volume of 1.6 mL.
基金Supported by the National Natural Science Foundation for Distinguished Young Scholars(No.21125627)the Natural Science Foundation of Tianjin(Nos.13JCYBJC20500,14JCZDJC37400)
文摘Novel pH-responsive membranes were prepared by blending pH-responsive amphiphilic copolymers with polyethersulfone(PES) via a nonsolvent-induced phase separation(NIPS) technique. The amphiphilic copolymers bearing Pluronic F127 and poly(methacrylic acid)(PMAA) segments, abbreviated as PMAA n–F127–PMAA n,were synthesized by free radical polymerization. The physical and chemical properties of the blend membranes were evaluated by scanning electron microscopy(SEM), Fourier transform infrared(FTIR) spectrum, water contact angle, Zeta potential and X-ray photoelectron spectroscopy(XPS). The enrichment of hydrophilic PMAA segments on the membrane surfaces was attributed to surface segregation during the membrane preparation process. The blend membranes had signi ficant p H-responsive properties due to the conformational changes of surface-segregated PMAA segments under different pH values of feed solutions. Fluxes of the blend membranes were larger at low p H values of feed solutions than that at high pH values. The pH-responsive ability of the membranes was enhanced with the increase of the degree of PMAA near-surface coverage.
基金supported in part by the National Natural Science Foundation of China under Grant U23A20278in part by the National Natural Science Foundation of China under Grant 62171151in part by the Fundamental Research Funds for the Central Universities under Grant HIT.OCEF.2021012。
文摘The hybrid carrier(HC)system rooted in the carrier fusion concept is gradually garnering attention.In this paper,we study the extended hybrid carrier(EHC)multiple access scheme to ensure reliable wireless communication.By employing the EHC modulation,a power layered multiplexing framework is realized,which exhibits enhanced interference suppression capability owing to the more uniform energy distribution design.The implementation method and advantage mechanism are explicated respectively for the uplink and downlink,and the performance analysis under varying channel conditions is provided.In addition,considering the connectivity demand,we explore the non-orthogonal multiple access(NOMA)method of the EHC system and develop the EHC sparse code multiple access scheme.The proposed scheme melds the energy spread superiority of EHC with the access capacity of NOMA,facilitating superior support for massive connectivity in high mobility environments.Simulation results have verified the feasibility and advantages of the proposed scheme.Compared with existing HC multiple access schemes,the proposed scheme exhibits robust bit error rate performance and can better guarantee multiple access performance in complex scenarios of nextgeneration communications.
基金support by the Key Research and Development Program of Ningxia Province of China(2018BCE01002)funded by the Joint Funds of the National Natural Science Foundation of China(U20A20124)the Natural Science Foundation Project of Ningxia(2022AAC01001).
文摘Herein,the co-pyrolysis reaction characteristics of corn straw(CS)and bituminous coal in the presence of ilmenite oxygen carriers(OCs)are investigated via thermogravimetry coupled with mass spectrometry.The results reveal that the participation of OCs weakens the devolatilization intensity of co-pyrolysis.When the CS blending ratio is<50%,the mixed fuel exhibits positive synergistic effects.The fitting results according to the Coats-Redfern integral method show that the solid-solid interaction between OCs and coke changes the reaction kinetics,enhancing the co-pyrolysis reactivity at the high-temperature zone(750-950C).The synergistic effect is most prominent at a 30%CS blending ratio,with copyrolysis activation energy in the range of 26.35-40.57 kJ·mol^(-1).
基金supported by Pfizer and the Haemophilia,Experience,Results,and Opportunities(HERO)Research Grant(Novo Nordisk).
文摘Objective:Hemophilia carriers(HCs),who are heterozygous for mutations in the clotting factor VIII/clotting factor IX gene(F8 or F9),may have a wide range of clotting factor levels,from very low,similar to afflicted males,to the upper limit of normal,and may experience mental health issues.The purpose of this study was to provide genetic information on mothers of hemophilia patients and to understand the clotting factor activity and phenotype of HCs.Additionally,we aimed to investigate the mental health status of HCs in China.Methods:A total of 127 hemophilia mothers,including 93 hemophilia A(HA)mothers and 34 hemophilia B(HB)mothers,were enrolled in this study.Long distance PCR,multiplex PCR,and Sanger sequencing were used to analyze mutations in F8 or F9.Coagulation factor activity was detected by a one-stage clotting assay.The Symptom Checklist 90(SCL-90,China/Mandarin version)was given to HCs at the same time to assess their mental health.Results:A total of 90.6%of hemophilia mothers were diagnosed genetically as carriers,with inversion in intron 22 and missense mutations being the most common mutation types in HA and HB carriers,respectively.The median clotting factor level in carriers was 0.74 IU/mL(ranging from 0.09 to 1.74 IU/mL)compared with 1.49 IU/mL(ranging from 0.93 to 1.89 IU/mL)in noncarriers,of which 14.3%of HCs had clotting factor levels of 0.40 IU/mL or below.A total of 53.8%(7/13)of HA carriers with low clotting factor levels(less than 0.50 IU/mL)had a history of bleeding,while none of the HB carriers displayed a bleeding phenotype.The total mean score and the global severity index of the SCL-90 for surveyed HCs were 171.00(±60.37)and 1.78(±0.59),respectively.A total of 67.7%of the respondents had psychological symptoms,with obsessive-compulsive disorder being the most prevalent and severe.The pooled estimates of all nine factors were significantly higher than those in the general population(P<0.05).Conclusions:The detection rate of gene mutations in hemophilia mothers was 90.6%,with a median clotting factor level of 0.74 IU/mL,and 14.3%of HCs had a clotting factor level of 0.40 IU/mL or below.A history of bleeding was present in 41.2%of HCs with low clotting factor levels(less than 0.50 IU/mL).Additionally,given the fragile mental health status of HCs in China,it is critical to develop efficient strategies to improve psychological well-being.
基金financially supported by the National Key Research and Development Program of China(2022YFE0118400)the National Natural Science Foundation of China(51702038)+1 种基金the Science&Technology Department of Sichuan Province(2020YFG0061)the Recruitment Program for Young Professionals。
文摘Quasi-2D Dion-Jacobson(DJ)tin halide perovskite has attracted much attention due to its elimination of Van der Waals gap and enhanced environmental stability.However,the bulky organic spacers usually form a natural quantum well structure,which brings a large quantum barrier and poor film quality,further limiting the carrier transport and device performance.Here,we designed three organic spacers with different chain lengths(ethylenediamine(EDA),1,3-propanediamine(PDA),and 1,4-butanediamine(BDA))to investigate the quantum barrier dependence.Theoretical and experimental characterizations indicate that EDA with short chain can reduce the lattice distortion and dielectric confinement effect,which is beneficial to the effective dissociation of excitons and the inhibition of trap-free non-radiative relaxation.In addition,EDA cation shows strong interaction with the inorganic octahedron,realizing large aggregates in precursor solution and high-quality films with improved structural stability.Furthermore,femtosecond transient absorption proves that EDA cations can also weaken the formation of small n-phases with large quantum barrier to achieve effective carrier transport between different nphases.Finally,the quasi-2D DJ(EDA)FA_(9)Sn_(10)I_(31)solar cells achieves a 7.07%power conversion efficiency with good environment stability.Therefore,this work sheds light on the regulation of the quantum barrier and carrier transport through the chain length of organic spacer for qua si-2D DJ lead-free perovskites.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Ministry of Science and ICT(No.2022M3J1A1085371)by the DGIST R&D programs of the Ministry of Science and ICT(23-ET-08 and 23-CoE-ET-01)supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2018R1A6A1A03025340).
文摘Cu2ZnSn(S,Se)4(CZTSSe)solar cells have resource distribution and economic advantages.The main cause of their low efficiency is carrier loss resulting from recombination of photo-generated electron and hole.To overcome this,it is important to understand their electron-hole behavior characteristics.To determine the carrier separation characteristics,we measured the surface potential and the local current in terms of the absorber depth.The elemental variation in the intragrains(IGs)and at the grain boundaries(GBs)caused a band edge shift and bandgap(Eg)change.At the absorber surface and subsurface,an upward Ec and Ev band bending structure was observed at the GBs,and the carrier separation was improved.At the absorber center,both upward Ec and Ev and downward Ec-upward Ev band bending structures were observed at the GBs,and the carrier separation was degraded.To improve the carrier separation and suppress carrier recombination,an upward Ec and Ev band bending structure at the GBs is desirable.
基金supported by the National Natural Science Foundation of China(52160013,51768054)Inner Mongolia Autonomous Region“Grassland Talent”Science Fund Program(CYY012057)+2 种基金Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT22062)Inner Mongolia Natural Science Foundation(2021LHMS05026)Inner Mongolia University Research Program(2023RCTD018,2023YXX8023,2024YXX5027,2023YXX8023,2024YXX5027).
文摘Biomass,recognized as renewable green coal,is pivotal for energy conservation,emission reduction,and dualcarbon objectives.Chemical looping gasification,an innovative technology,aims to enhance biomass utilization efficiency.Using metal oxides as oxygen carriers regulates the oxygen-to-fuel ratio to optimize synthesis product yields.This review examines various oxygen carriers and their roles in chemical looping biomass gasification,including natural iron ore types,industrial by-products,cerium oxide-based carriers,and core-shell structures.The catalytic,kinetic,and phase transfer properties of iron-based oxygen carriers are analyzed,and their catalytic cracking capabilities are explored.Molecular interactions are elucidated and system performance is optimized by providing insights into chemical looping reaction mechanisms and strategies to improve carrier efficiency,along with discussing advanced techniques such as density functional theory(DFT)and reactive force field(ReaxFF)molecular dynamics(MD).This paper serves as a roadmap for advancing chemical looping gasification towards sustainable energy goals.
基金financially supported by the National Natural Science Foundation of China (Nos. 52174279, U2202251, and 52266008)Applied Basic Research Program of Yunnan Province for Distinguished Young Scholars (No. 202201AV070004)+1 种基金Central Guiding Local Science and Technology Development Fund (No. 202207AA110001)the Yunnan Fundamental Research Projects (No. 202301AU070027, 202401AT070388)
文摘Perovskite oxides has been attracted much attention as high-performance oxygen carriers for chemical looping reforming of methane,but they are easily inactivated by the presence of trace H_(2)S.Here,we propose to modulate both the activity and resistance to sulfur poisoning by dual substitution of Mo and Ni ions with the Fe-sites of LaFeO_(3)perovskite.It is found that partial substitution of Ni for Fe substantially improves the activity of LaFeO_(3)perovskite,while Ni particles prefer to grow and react with H_(2)S during the long-term successive redox process,resulting in the deactivation of oxygen carriers.With the presence of Mo in LaNi_(0.05)Fe_(0.95)O_(3−σ)perovskite,H_(2)S preferentially reacts with Mo to generate MoS_(2),and then the CO_(2)oxidation can regenerate Mo via removing sulfur.In addition,Mo can inhibit the accumulation and growth of Ni,which helps to improve the redox stability of oxygen carriers.The LaNi_(0.05)Mo_(0.07)Fe_(0.88)O_(3−σ)oxygen carrier exhibits stable and excellent performance,with the CH_(4)conversion higher than 90%during the 50 redox cycles in the presence of 50 ppm H_(2)S at 800℃.This work highlights a synergistic effect in the perovskite oxides induced by dual substitution of different cations for the development of high-performance oxygen carriers with excellent sulfur tolerance.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.52122008,51978024,and 52370003)the Science and Technology and Innovation Commission of Shen Zhen Municipality(Grant No.JCYJ20200109105212568).
文摘Investigating lattice vibrations through Raman spectroscopy is a crucial method for studying crystalline materials.Carriers can interact with lattices and influence lattice vibrations;thus,it is feasible to study the effect of photo-generated carriers on phonons by analyzing changes in the Raman spectra of semiconductors.Rutile is one of the predominant crystalline phases of TiO_(2),which is a widely utilized metal oxide semiconductor.In this work,rutile TiO_(2) is coated on a thinned optical fiber to concentrate ultraviolet light energy within the material,thereby enhancing the generation of carriers and amplifying the changes in the Raman spectra.A Raman detection laser with a wavelength of 532 nm is utilized to collect the Raman spectra of rutile TiO_(2) during irradiation.Using this setup,the impact of photo-generated carriers on the phonons corresponding to Raman vibrational modes is researched.The localization and non-radiative recombination of photo-generated carriers contribute to a reduction in both the frequencies and lifetimes of phonons.This work provides a novel approach to researching the effect of carriers on phonons.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12004067,11974070,62027807,and 52272137)the National Key R&D Program of China(Grant No.2022YFA1403000)。
文摘We measure the time-resolved terahertz spectroscopy of GeSn thin film and studied the ultrafast dynamics of its photo-generated carriers.The experimental results show that there are photo-generated carriers in GeSn under femtosecond laser excitation at 2500 nm,and its pump-induced photoconductivity can be explained by the Drude–Smith model.The carrier recombination process is mainly dominated by defect-assisted Auger processes and defect capture.The firstand second-order recombination rates are obtained by the rate equation fitting,which are(2.6±1.1)×10^(-2)ps^(-1)and(6.6±1.8)×10^(-19)cm^(3)·ps^(-1),respectively.Meanwhile,we also obtain the diffusion length of photo-generated carriers in GeSn,which is about 0.4μm,and it changes with the pump delay time.These results are important for the GeSn-based infrared optoelectronic devices,and demonstrate that Ge Sn materials can be applied to high-speed optoelectronic detectors and other applications.
文摘Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for converting ethane to ethylene.In the current study MeO/LaCoO_(3)(MeO=Fe_(2)O_(3),NiO or Co_(2)O_(3))composite metal oxides were prepared via citrate gel and impregnation methods,and used as oxygen carriers for CL-ODH.X-ray diffraction results indicated that all oxygen carriers had a perovskite structure even after eight redox cycles.Under a reaction temperature of 650°C,a reaction pressure of 0.1 MPa,and a weight hourly space velocity(WHSV)of 7500 mL/(g·h),ethane conversion over Co_(2)O_(3)/LaCoO_(3) reached 100%and ethylene selectivity reached 60%,both of which were better than corresponding values attained over Fe_(2)O_(3)/LaCoO_(3) and NiO/LaCoO_(3).Ethylene selectivity remained stable for 80 cycles over Co_(2)O_(3)/LaCoO_(3),then decreased gradually after 80 cycles.X-ray photoelectron spectroscopy results and evaluation results indicated that lattice oxygen and O_(2)2-had a direct relationship with ethane conversion and ethylene selectivity.Co_(2)O_(3)/LaCoO_(3) exhibited a strong capacity to release and absorb oxygen,mainly due to interaction between Co_(2)O_(3) and LaCoO_(3).
基金This work was supported by National Key R&D Program Project[Grant Number 2020YFB0106603]Provincial Major Scientific and Technological Innovation Project[Grant Number 2021CXGC010207-1]+2 种基金Shantui Engineering Machinery Intelligent Equipment Innovation and Entrepreneurship Community Innovation Project[Grant Number GTT2021105]Shandong Provincial Science and Technology SMEs Innovation Capacity Improvement Project[Grant Numbers 2021TSGC1334]Undergraduate School of Shandong University,China[Grant Number 2022Y155].
文摘A Diesel Particulate Filter(DPF)is a critical device for diesel engine exhaust products treatment.When using active-regeneration purification methods,on the one hand,a spatially irregular gas flow can produce relatively high local temperatures,potentially resulting in damage to the carrier;On the other hand,the internal temperature field can also undergo significant changes contributing to increase this risk.This study explores the gas flow uniformity in a DPF carrier and the related temperature behavior under drop-to-idle(DTI)condition by means of bench tests.It is shown that the considered silicon carbide carrier exhibits good flow uniformity,with a temperature deviation of no more than 2%with respect to the same radius measurement point at the outlet during the regeneration stage.In the DTI test,the temperature is relatively high within r/2 near the outlet end,where the maximum temperature peak occurs,and the maximum radial temperature gradient is located between r/2 and the edge.Both these quantities grow as the soot load increases,thereby making the risk of carrier burnout greater.Finally,it is shown that the soot load limit of the silicon carbide DPF can be extended to 11 g/L,which reduces the frequency of active regeneration by approximately 40%compared to a cordierite DPF.