The fabrication of nano porous silicon, nPSi, using alkali etching process has been studied and carried out. The surface chemistry of anisotropic etching of n-type Si-wafer is reviewed and the anisotropic chemical etc...The fabrication of nano porous silicon, nPSi, using alkali etching process has been studied and carried out. The surface chemistry of anisotropic etching of n-type Si-wafer is reviewed and the anisotropic chemical etching of silicon in alkaline solution using wetting agents is discussed. Transformation of crystallographic plane of n-Si (211) to nPSi (100) has occurred on using n-propanol as wetting agent. The rate of pore formation was 0.02478 - 0.02827 μm/min, which was heavily dependent upon the concentration of the etchant containing wetting agents, allowing patterned porous silicon formation through selective doping of the substrate. A particle size of 15 nm for porous nano-silicon was calculated from the XRD data. Porosity of PS layers is about 10%. Pore diameter and porous layer thickness are 0.0614 nm and 16 μm, respectively. The energy gap of the produced porous silicon is 3.3 eV. Furthermore, the combination of PS with Congo Red, which are nanostructured due to their deposition within the porous matrix is discussed. Such nano compounds offer broad avenue of new and interesting properties depending on the involved materials as well as on their morphology. Chemical route was utilized as the host material to achieve pores filling. They were impregnated with Congo Red, which gave good results for the porous silicon as a promising pH sensor.展开更多
Whether in the monitoring of critically ill patients such as shock, respiratory failure, brain injury, or in major anesthesia surgeries, it is necessary to evaluate the patient’s pO<sub>2</sub> and pH. An...Whether in the monitoring of critically ill patients such as shock, respiratory failure, brain injury, or in major anesthesia surgeries, it is necessary to evaluate the patient’s pO<sub>2</sub> and pH. An optical fiber sensor presented is capable of monitoring the presence of oxygen partial pressure (pO<sub>2</sub>) and pH in the real-time. The sensor is based on fluorescence sensing of polymer immobilized in the oxygen/pH-sensitive membranes and covalently attached to the optical fiber probe. The design of this sensor uses LED as light source, which is an excitation light source, inducing specific wavelengths of fluorescence on the oxygen/pH-sensitive membrane. The intensity and lifetime of fluorescence are related to the pO<sub>2</sub> and pH. So the pO<sub>2</sub> and pH can be measured by the relationship between the pO<sub>2</sub>/pH values and the intensity and lifetime of fluorescence. The signal conditioning system based on DSP and STM32 was used to store and process data, and display test values. The response of the sensor for pO<sub>2</sub> and pH monitoring with nitrogen (N<sub>2</sub>) as a balancing gas in the laboratory was performed. Finally, the oxygen/pH sensing scheme presented in this work is intended for using in biological, medical and environmental applications.展开更多
文摘The fabrication of nano porous silicon, nPSi, using alkali etching process has been studied and carried out. The surface chemistry of anisotropic etching of n-type Si-wafer is reviewed and the anisotropic chemical etching of silicon in alkaline solution using wetting agents is discussed. Transformation of crystallographic plane of n-Si (211) to nPSi (100) has occurred on using n-propanol as wetting agent. The rate of pore formation was 0.02478 - 0.02827 μm/min, which was heavily dependent upon the concentration of the etchant containing wetting agents, allowing patterned porous silicon formation through selective doping of the substrate. A particle size of 15 nm for porous nano-silicon was calculated from the XRD data. Porosity of PS layers is about 10%. Pore diameter and porous layer thickness are 0.0614 nm and 16 μm, respectively. The energy gap of the produced porous silicon is 3.3 eV. Furthermore, the combination of PS with Congo Red, which are nanostructured due to their deposition within the porous matrix is discussed. Such nano compounds offer broad avenue of new and interesting properties depending on the involved materials as well as on their morphology. Chemical route was utilized as the host material to achieve pores filling. They were impregnated with Congo Red, which gave good results for the porous silicon as a promising pH sensor.
基金supported by the State Key Laboratory of Analytical Chemistry for Life Science,Jiangsu Key Laboratory of Advanced Organic Materials,School of Chemistry and Chemical Engineering,Nanjing University。
文摘Whether in the monitoring of critically ill patients such as shock, respiratory failure, brain injury, or in major anesthesia surgeries, it is necessary to evaluate the patient’s pO<sub>2</sub> and pH. An optical fiber sensor presented is capable of monitoring the presence of oxygen partial pressure (pO<sub>2</sub>) and pH in the real-time. The sensor is based on fluorescence sensing of polymer immobilized in the oxygen/pH-sensitive membranes and covalently attached to the optical fiber probe. The design of this sensor uses LED as light source, which is an excitation light source, inducing specific wavelengths of fluorescence on the oxygen/pH-sensitive membrane. The intensity and lifetime of fluorescence are related to the pO<sub>2</sub> and pH. So the pO<sub>2</sub> and pH can be measured by the relationship between the pO<sub>2</sub>/pH values and the intensity and lifetime of fluorescence. The signal conditioning system based on DSP and STM32 was used to store and process data, and display test values. The response of the sensor for pO<sub>2</sub> and pH monitoring with nitrogen (N<sub>2</sub>) as a balancing gas in the laboratory was performed. Finally, the oxygen/pH sensing scheme presented in this work is intended for using in biological, medical and environmental applications.