In secure multicast, one of the challenging problems is the authentication of multicast packets. This paper presents a novel scheme to address this problem, which combines ideas in both the hash tree schemes and the h...In secure multicast, one of the challenging problems is the authentication of multicast packets. This paper presents a novel scheme to address this problem, which combines ideas in both the hash tree schemes and the hash chain schemes. In this scheme, a group of packets is partitioned into equal-sized subgroups. Then a Merkle hash tree is built for each subgroup of packets, and the hash value of every root is appended to preceding packets to form hash chains. Its performance is analyzed and simulated using Biased Coin Toss loss model and 2-state Markov Chain loss model, respectively. Compared with the original hash chain schemes, results show that this scheme is much more efficient in term of communication overhead.展开更多
Most of the classical self-similar traffic models are asymptotic in nature. Therefore, it is crucial for an appropriate buffer design of a switch and queuing based performance evaluation. In this paper, we investigate...Most of the classical self-similar traffic models are asymptotic in nature. Therefore, it is crucial for an appropriate buffer design of a switch and queuing based performance evaluation. In this paper, we investigate delay and loss behavior of the switch under self-similar fixed length packet traffic by modeling it as CMMPP/D/1 and CMMPP/D/1/K, respectively, where Circulant Markov Modulated Poisson Process (CMMPP) is fitted by equating the variance of CMMPP and that of self-similar traffic. CMMPP model is already the validated one to emulate the self-similar characteristics. We compare the analytical results with the simulation ones.展开更多
This paper investigates the untraditional approach of contention resolution in Wavelength Division Multiplexing (WDM) Optical Packet Switching (OPS). The most striking characteristics of the developed switch architect...This paper investigates the untraditional approach of contention resolution in Wavelength Division Multiplexing (WDM) Optical Packet Switching (OPS). The most striking characteristics of the developed switch architecture are: (1) Contention resolution is achieved by a combined sharing of Fiber Delay-Lines (FDLs) and Tunable Optical Wavelength Converters (TOWCs); (2) FDLs are arranged in non-degenerate form, i.e., non-uniform distribution of the delay lines; (3) TOWCs just can perform wavelength conversion in partial continuous wavelength channels, i.e., sparse wavelength conversion. The concrete configurations of FDLs and TOWCs are described and analyzed under non-bursty and bursty traffic scenarios. Simulation results demonstrate that for a prefixed packet loss probability constraint, e.g., 10-6, the developed architecture provides a different point of view in OPS design. That is, combined sharing of FDLs and TOWCs can, effectively, obtain a good tradeoff between the switch size and the cost, and TOWCs which are achieved in sparse form can also decrease the implementing complexity.展开更多
基金Supported by the Natural Science Foundation of China (No. 60173066)
文摘In secure multicast, one of the challenging problems is the authentication of multicast packets. This paper presents a novel scheme to address this problem, which combines ideas in both the hash tree schemes and the hash chain schemes. In this scheme, a group of packets is partitioned into equal-sized subgroups. Then a Merkle hash tree is built for each subgroup of packets, and the hash value of every root is appended to preceding packets to form hash chains. Its performance is analyzed and simulated using Biased Coin Toss loss model and 2-state Markov Chain loss model, respectively. Compared with the original hash chain schemes, results show that this scheme is much more efficient in term of communication overhead.
文摘Most of the classical self-similar traffic models are asymptotic in nature. Therefore, it is crucial for an appropriate buffer design of a switch and queuing based performance evaluation. In this paper, we investigate delay and loss behavior of the switch under self-similar fixed length packet traffic by modeling it as CMMPP/D/1 and CMMPP/D/1/K, respectively, where Circulant Markov Modulated Poisson Process (CMMPP) is fitted by equating the variance of CMMPP and that of self-similar traffic. CMMPP model is already the validated one to emulate the self-similar characteristics. We compare the analytical results with the simulation ones.
基金Supported by the National Natural Science Foundation of China (No.69990540).
文摘This paper investigates the untraditional approach of contention resolution in Wavelength Division Multiplexing (WDM) Optical Packet Switching (OPS). The most striking characteristics of the developed switch architecture are: (1) Contention resolution is achieved by a combined sharing of Fiber Delay-Lines (FDLs) and Tunable Optical Wavelength Converters (TOWCs); (2) FDLs are arranged in non-degenerate form, i.e., non-uniform distribution of the delay lines; (3) TOWCs just can perform wavelength conversion in partial continuous wavelength channels, i.e., sparse wavelength conversion. The concrete configurations of FDLs and TOWCs are described and analyzed under non-bursty and bursty traffic scenarios. Simulation results demonstrate that for a prefixed packet loss probability constraint, e.g., 10-6, the developed architecture provides a different point of view in OPS design. That is, combined sharing of FDLs and TOWCs can, effectively, obtain a good tradeoff between the switch size and the cost, and TOWCs which are achieved in sparse form can also decrease the implementing complexity.