期刊文献+
共找到86篇文章
< 1 2 5 >
每页显示 20 50 100
Organic carbon stratification and size distribution of three typical paddy soils from Taihu Lake region,China 被引量:21
1
作者 PAN Genxing WU Laosheng +3 位作者 LI Lianqing ZHANG Xuhui GONG Wei WOOD Yvonne 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第4期456-463,共8页
Developing realistic soil carbon (C) sequestration strategies for China's sustainable agriculture relies on accurate estimates of the amount, retention and turnover rates of C stored in paddy soils. Available C est... Developing realistic soil carbon (C) sequestration strategies for China's sustainable agriculture relies on accurate estimates of the amount, retention and turnover rates of C stored in paddy soils. Available C estimates to date are predominantly for the tilled and flood-irrigated surface topsoil (ca. 30 cm). Such estimates cannot be used to extrapolate to soil depths of 100 cm since soil organic carbon (SOC) generally shows a sharp decrease with depth. In this research, composite soil samples were collected at several depths to 100 cm from three representative paddy soils in the Taihu Lake region, China. Soil organic carbon distribution in the profiles and in aggregate-size fractions was determined. Results showed that while SOC decreased exponentially with depth to 100 cm, a substantial proportion of the total SOC (30%-40%) is stored below the 30 cm depth. In the carbon-enriched paddy topsoils, SOC was found to accumulate preferentially in the 2-0.25 and 0.25-0.02 mm aggregate size fractions. δ^13C analysis of the coarse micro-aggregate fraction showed that the high degree of C stratification in the paddy topsoil was in agreement with the occurrence of lighter δ^1313C in the upper 30 cm depth. These results suggest that SOC stratification within profiles varies with different pedogenetical types of paddy soils with regards to clay and iron oxyhydrates distributions. Sand-sized fractions of aggregates in paddy soil systems may play a very important role in carbon sequestration and turnover, dissimilar to other studied agricultural systems. 展开更多
关键词 profile stratification organic carbon paddy soils size fractions soil aggregates carbon storage
下载PDF
Effects of free iron oxyhydrates and soil organic matter on copper sorption-desorption behavior by size fractions of aggregates from two paddy soils 被引量:14
2
作者 WANG Fang, PAN Genxing, LI Lianqing Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095, China. 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第5期618-624,共7页
Effects of free iron oxyhydrates (Fed) and soil organic matter (SOM) on copper (Cu^2+) sorption-desorption behavior by size fractions of aggregates from two typical paddy soils (Ferric-Accumulic Stagnic Anthro... Effects of free iron oxyhydrates (Fed) and soil organic matter (SOM) on copper (Cu^2+) sorption-desorption behavior by size fractions of aggregates from two typical paddy soils (Ferric-Accumulic Stagnic Anthrosol (Soil H) and Gleyic Stagnic Anthrosol (Soil W)) were investigated with and without treatments of dithionite-citrate-bicarbonate and of H2O2. The size fractions of aggregates were obtained from the undisturbed bulk topsoil using a low energy ultrasonic dispersion procedure. Experiments of equilibrium sorption and subsequent desorption were conducted at soil water ratio of 1:20, 25℃. For Soil H, Cu^2+ sorption capacity of the DCB-treated size fractions was decreased by 5.9% for fine sand fraction, by 40.4% for coarse sand fraction, in comparison to 2.9% for the bnlk sample. However, Cu^2+ sorption capacities of the H2O2-treated fractions were decreased by over 80% for the coarse sand fraction and by 15% for the clay-sized fraction in comparison to 88% for bulk soil. For Soil W, Cu^2+ sorption capacity of the DCB-treated size fraction was decreased by 30% for the coarse sand fraction and by over 75% for silt sand fraction in comparison to 44.5% for the bulk sample. Cu^2+ sorption capacities of the H2O2-treated fractions were decreased by only 2.0% for the coarse sand fraction and by 15% for the fine sand fraction in comparison to by 3.4% for bulk soil. However, Cu^2+ desorption rates were increased much in H2O2-treated samples by over 80% except the clay-sized fraction (only 9.5%) for Soil H. While removal of SOM with H2O2 tendend to increase the desorption rate, DCB- and H2O2-treatments caused decrease in Cu^2+ retention capacity of size fractions, Particularly, there hardly remained Cu^2+ retention capacity by size fractions from Soil H after H2O2 treatment except for clay-sized fraction. These findings supported again the dominance of the coarse sand fraction in sorption of metals and the preference of absorbed metals bound to SOM in differently stabilized status among the size fractions. Thus, enrichment and turnover of SOM in paddy soils may have great effects on metal retention and chemical mobility in paddy soils. 展开更多
关键词 paddy soils Cn^2+ sorption-desorption soil organic matter free iron oxyhydrates size fraction of aggregates
下载PDF
Changes in Organic Carbon and Nutrient Contents of Highly Productive Paddy Soils in Yujiang County of Jiangxi Province,China and Their Environmental Application 被引量:7
3
作者 LI Zhong-pei ZHANG Tao-lin CHEN Bi-yun 《Agricultural Sciences in China》 CAS CSCD 2006年第7期522-529,共8页
Paddy field is an important land use in subtropical China. Development of high soil fertility and productivity is the management goal of paddy field, Fertilization and management practices have not only influenced the... Paddy field is an important land use in subtropical China. Development of high soil fertility and productivity is the management goal of paddy field, Fertilization and management practices have not only influenced the status of organic matter and nutrients in the soil but also affected the environmental quality. This article investigates the contents of organic carbon and the nutrients, and the change over the last 20 years in highly productive paddy soils and their environmental application. Field soils were sampled and the analytical results were compared with the corresponding values in the Second Soil Survey in Yujiang County of Jiangxi Province, China. The results showed that surface soils at a depth of 0-10 cm in highly productive paddy fields in Yujiang County of Jiangxi Province had contents of organic carbon (20.2 ±3.88) g kg^-1, total nitrogen (2.09±0.55) g kg^-1, and available phosphorus (42.7 ±32.7) mg kg^-1, respectively, which were all at very rich levels. Over the last 20 years, the organic carbon pool of the highly productive paddy soils reached a steady state. Total N and available P significantly increased, whereas available K changed a little. The amount and percentage of P immobilization in the surface soil (0-10 cm) of highly productive paddy fields were (142.7 ~ 41.1) mg kg-~ and (36.2~ 10.4)% of added P, and CEC (7.93 ~ 1.32) cmol kg-~. These two parameters were not higher than the mean values of paddy soils and upland red soils in the areas. Results also showed that fertilizer P in highly productive paddy soils had a high mobility and was prone to move toward a water body, which is the main source of nutrients causing eutrophication. Because of a weak K-fixing capacity, the available K content was not high in highly productive paddy soils. This suggests that attention should be paid to the K balance and the increase of soil K pool. 展开更多
关键词 Yujiang County highly productive paddy soils organic C nutrients environmental application
下载PDF
Adsorption characteristic of bensulfuron-methyl at variable added Pb^(2+) concentrations on paddy soils 被引量:4
4
作者 WU Weihong WANG Haizhen +1 位作者 XU Jianming XIE Zhengmiao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第8期1129-1134,共6页
The combined pollution of heavy metal Pb^2+ and bensulfuron-methyl (BSM), originating from chemical herbicides, in agroecological environments has become commonplace in southern China. The adsorption of BSM on thre... The combined pollution of heavy metal Pb^2+ and bensulfuron-methyl (BSM), originating from chemical herbicides, in agroecological environments has become commonplace in southern China. The adsorption of BSM on three paddy soils in the presence of Pb^2+ was examined using high-performance liquid chromatograph (HPLC). Results indicated that adsorption of BSM could accurately be described by a Freundlich isotherm equation with correlation constant (R) 〉 0.98, irrespective of the presence of spiked Pb^2+. Of the various factors influencing BSM sorption, soil pH appeared to be the most influential. The constant Kf of Freundlich isotherm equation tended to increase with increasing Pb^2+ concentration in soil which indicated that the spiked of Pb^2+ in paddy soils would promote the sorption of BSM. AGo of BSM in three paddy soils was less than 40 kJ/mol in all treatments, indicating the adsorption of BSM is mainly physical in nature. The elution of soil dissolved organic matter (DOM) enhanced the adsorption of BSM in paddy soils. The mechanisms involved in the promotion effects of the spiked Pb^2+ on BSM adsorption might be the modified surface characteristics of paddy soil solids due to the soil acidification and the increase of soil organic matter concentration because of DOM binding. 展开更多
关键词 BENSULFURON-METHYL ADSORPTION paddy soils Pb pollution
下载PDF
Effects of Glucose Addition on N Transformations in Paddy Soils with a Gradient of Organic C Content in Subtropical China 被引量:2
5
作者 JIA Jun-xian LI Zhong-pei +1 位作者 LIU Ming CHE Yu-ping 《Agricultural Sciences in China》 CAS CSCD 2010年第9期1309-1316,共8页
To better understand the interaction of N transformation and exogenous C source and manage N fertilization, the effects of glucose addition on N transformation were determined in paddy soils with a gradient of soil or... To better understand the interaction of N transformation and exogenous C source and manage N fertilization, the effects of glucose addition on N transformation were determined in paddy soils with a gradient of soil organic C content. Changes in N mineralization, nitrification and denitrification, as well as their response to glucose addition were measured by incubation experiments in paddy soils derived from Quaternary red clay in subtropical China. Mineralization and denitrification were changed in order of increasing soil fertilities: high 〉 middle 〉 low. During the first week of incubation, net N mineralization and denitrification rates in paddy soil with high fertility were 1.9 and 1.1 times of those in soil with middle fertility and 5.3 and 2.9 times of those in soil with low fertility, respectively. Addition of glucose decreased net N mineralization by approximately 78.8, 109.2 and 177.4% in soils with high, middle and low fertility, respectively. However, denitrification rates in soils with middle and low fertility were increased by 14.4 and 166.2% respectively. The highest nitrate content among the paddy soils tested was 0.62 mg kg-1 and the highest nitrification ratio was 0.33%. Addition of glucose had no obvious effects on nitrate content and nitrification ratio. It was suggested that the intensity of mineralization and denitrification was quite different in soils with different fertility, and increased with increasing soil organic C content. Addition of glucose decreased mineralization, but increased denitrification, and the shifts were greater in soil with low than in soil with high organic C content. Neither addition of glucose nor inherent soil organic C had obvious effects on nitrification in paddy soils tested. 展开更多
关键词 paddy soils of subtropical China soil fertility glucose addition nitrogen transformation
下载PDF
Study on the fractionation of inorganic phosphates in some paddy soils of Hunan Province
6
《Chinese Rice Research Newsletter》 1999年第2期8-9,共2页
Hunan Province of China,lying in the centralof subtropical zone,is one of the major pro-duction areas of double-season rice.Rice pad-dy is the main agricultural soil of the area.Mixed samples of plough horizon(0-20cm... Hunan Province of China,lying in the centralof subtropical zone,is one of the major pro-duction areas of double-season rice.Rice pad-dy is the main agricultural soil of the area.Mixed samples of plough horizon(0-20cm)ofmajor types of paddy soils were collected be- fore cultivation in the spring of 1996-1997.The chemical fractions of inorganic phosphatesand the relationships between inorganic phos- phates and olsen-available P in the soils werestudied by using the fractionation system of in-organic phosphates proposed by JIANG Baifanet al. 展开更多
关键词 Study on the fractionation of inorganic phosphates in some paddy soils of Hunan Province
下载PDF
Topsoil organic carbon mineralization and CO_2 evolution of three paddy soils from South China and the temperature dependence 被引量:39
7
作者 ZHANG Xu-hui LI Lian-qing PAN Gen-xing 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第3期319-326,共8页
Carbon mineralization and its response to climatic warming have been receiving global attention for the last decade. Although the virtual influence of temperature effect is still in great debate, little is known on th... Carbon mineralization and its response to climatic warming have been receiving global attention for the last decade. Although the virtual influence of temperature effect is still in great debate, little is known on the mineralization of organic carbon (SOC) of paddy soils of China under warming. SOC mineralization of three major types of China's paddy soils is studied through laboratory incubation for 114 d under soil moisture regime of 70% water holding capacity at 20℃ and 25℃ respectively. The carbon that mineralized as CO2 evolved was measured every day in the first 32 d and every two days in the following days. Carbon mineralized during the 114 d incubation ranged from 3.51 to 9.22 mg CO2-C/gC at 20℃ and from 4.24 to 11.35 mg CO2-C/gC at 25℃ respectively; and a mineralizable C pool in the range of 0.24 to 0.59 gC/kg, varying with different soils. The whole course of C mineralization in the 114 d incubation could be divided into three stages of varying rates, representing the three subpools of the total mineralizable C: very actively mineralized C at 1-23 d, actively tnineralized C at 24--74 d and a slowly mineralized pool with low and more or less stabilized C mineralization rate at 75-114 d. The calculated Q10 values ranged from 1.0 to 2.4, varying with the soil types and N status. Neither the total SOC pool nor the labile C pool could account for the total mineralization potential of the soils studied, despite a well correlation of labile C with the shortly and actively mineralized C, which were shown in sensitive response to soil warming. However, the portion of microbial C pool and the soil C/N ratio controlled the C mineralization and the temperature dependence. Therefore, C sequestration may not result in an increase of C mineralization proportionally. The relative control of C bioavailability and microbial metabolic activity on C mineralization with respect to stabilization of sequestered C in the paddy soils of China is to be further studied. 展开更多
关键词 C mineralization carbon pool laboratory incubation paddy soil soil warming
下载PDF
Adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ) in paddy soils cultivated for various years in the subtropical China 被引量:22
8
作者 Liang Ma Renkou Xu Jun Jiang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第5期689-695,共7页
The adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ) on upland red soil,and paddy soils which were originated from the upland soil and cultivated for 8,15,35 and 85 years,were investigated using the batch method.The... The adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ) on upland red soil,and paddy soils which were originated from the upland soil and cultivated for 8,15,35 and 85 years,were investigated using the batch method.The study showed that the organic matter content and cation exchange capacity (CEC) of the soils are important factors controlling the adsorption and desorption of Cu(Ⅱ) and Pb(Ⅱ).The 15-Year paddy soil had the highest adsorption capacity for Pb(Ⅱ),followed by the 35-Year paddy soil.Both the 35-Year paddy soil and 15-Year paddy soil adsorbed more Cu(Ⅱ) than the upland soil and other paddy soils.The 15-Year paddy soils exhibited the highest desorption percentage for both Cu(Ⅱ) and Pb(Ⅱ).These results are consistent with the trend for the CEC of the soils tested.The high soil CEC contributes not only to the adsorption of Cu(Ⅱ) and Pb(Ⅱ) but also to the electrostatic adsorption of the two heavy metals by the soils.Lower desorption percentages for Cu(Ⅱ) (36.7% to 42.2%) and Pb(Ⅱ) (50.4% to 57.9%) were observed for the 85-Year paddy soil.The highest content of organic matter in the soil was responsible for the low desorption percentages for the two metals because the formation of the complexes between the organic matter and the metals could increase the stability of the heavy metals in the soils. 展开更多
关键词 adsorption and desorption Cu(Ⅱ) Pb(Ⅱ) cultivation chronosequence paddy soil
下载PDF
Soil Quality Assessment of Acid Sulfate Paddy Soils with Different Productivities in Guangdong Province,China 被引量:19
9
作者 LIU Zhan-jun ZHOU Wei +5 位作者 SHEN Jian-bo LI Shu-tian LIANG Guo-qing WANG Xiu-bin SUN Jing-wen AI Chao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第1期177-186,共10页
Land conversion is considered an effective measure to ensure national food security in China, but little information is available on the quality of low productivity soils, in particular those in acid sulfate soil regi... Land conversion is considered an effective measure to ensure national food security in China, but little information is available on the quality of low productivity soils, in particular those in acid sulfate soil regions. In our study, acid sulfate paddy soils were divided into soils with high, medium and low levels based on local rice productivity, and 60 soil samples were collected for analysis. Twenty soil variables including physical, chemical and biochemical properties were determined. Those variables that were significantly different between the high, medium and low productivity soils were selected for principal component analysis, and microbial biomass carbon (MBC), total nitrogen (TN), available silicon (ASi), pH and available zinc (AZn) were retained in the minimum data set (MDS). After scoring the MDS variables, they were integrated to calculate a soil quality index (SQI), and the high, medium and low productivity paddy soils received mean SQI scores of 0.95, 0.83 and 0.60, respectively. Low productivity paddy soils showed worse soil quality, and a large discrepancy was observed between the low and high productivity paddy soils. Lower MBC, TN, ASi, pH and available K (AK) were considered as the primary limiting factors. Additionally, all the soil samples collected were rich in available P and AZn, but deficient in AK and ASi. The results suggest that soil AK and ASi deficiencies were the main limiting factors for all the studied acid sulfate paddy soil regions. The application of K and Si on a national basis and other sustainable management approaches are suggested to improve rice productivity, especially for low productivity paddy soils. Our results indicated that there is a large potential for increasing productivity and producing more cereals in acid sulfate paddy soil regions. 展开更多
关键词 soil quality assessment acid sulfate paddy soil soil quality index different productivity
下载PDF
Differences in Organic C Mineralization Between Aerobic and Submerged Conditions in Paddy Soils of Southern Jiangsu Province,China 被引量:13
10
作者 HAO Rui-jun LI Zhong-pei CHE Yu-ping 《Agricultural Sciences in China》 CAS CSCD 2011年第9期1410-1418,共9页
Moisture regime plays a crucial role in the mineralization of soil organic carbon (SOC). In this paper, the dynamics of SOC mineralization in typical paddy soils of Changshu, Jiangsu Province, China, was investigate... Moisture regime plays a crucial role in the mineralization of soil organic carbon (SOC). In this paper, the dynamics of SOC mineralization in typical paddy soils of Changshu, Jiangsu Province, China, was investigated by incubation test in laboratory. The differences in SOC mineralization under aerobic and submerged conditions of paddy soils were also studied. Results showed that the daily mineralization of SOC under different moisture regimes was significantly different in the whole incubation period, at the beginning of the incubation, it decreased quickly under aerobic condition, but increased rapidly under submerged condition, and both remained constant after 10 d of incubation. The differences in SOC mineralization were found to be mainly at the beginning period of the incubation and decreased along with the incubation time. Thus, the difference was not significantly different at the later incubation period. The respiration intensity, daily and cumulative mineralization of SOC under aerobic condition was 2.26-19.11, 0.96-2.41, and 0.96-2.41 times than those .under submerged condition, respectively. Statistic analyses showed that the higher the contents of microbial biomass carbon and nitrogen, the more significant difference in respiration intensity between aerobic and submerged conditions, but the higher the contents of microbial biomass nitrogen and dissolved organic carbon, the more significant difference in daily mineralization of SOC between the two conditions. The decrease in soil microbial activity under submerged condition was the main reason leading to the decrease in respiration intensity, but the decrease in SOC mineralization was also correlated with the changes in dissolved organic carbon over the whole incubation period. 展开更多
关键词 moisture regime paddy soil SOC mineralization aerobic condition submerged condition difference
下载PDF
Effects of Root Penetration Restriction on Growth and Mn Nutrition of Different Winter Wheat Genotypes in Paddy Soils 被引量:11
11
作者 LU Shi-hua, ZENG Xiang-zhong, LIU Xue-jun and ZHANG Fu-suo( Soil and Fertilizer Institute , Sichuan Academy of Agricultural Sciences , Chengdu 610066 , P.R.China Departmentof Plant Nutrition , Key Laboratory of Plant Nutrition , Ministry of Agriculture , Key Laboratory of Plant-SoilInteractions, Ministry of Education , China Agricultural University, Beijing 100094 , P.R.China) 《Agricultural Sciences in China》 CAS CSCD 2002年第6期667-673,共7页
Effects of root penetration restriction on the growth and Mn nutrition of different wheat genotypes were studied in paddy soils using a method of nylon net bags (400 mesh) buried in the soil. The results showed that t... Effects of root penetration restriction on the growth and Mn nutrition of different wheat genotypes were studied in paddy soils using a method of nylon net bags (400 mesh) buried in the soil. The results showed that the spatial distribution of Mn in paddy soils played an important role in the growth and Mn nutrition of wheat crops. In the treatment where wheat roots were restricted in the plough layer by nylon net bags, the symptoms of Mn deficiency in wheat occurred much earlier and more seriously than usual. Of the two tested wheat genotypes, 80-8 was tolerant to Mn deficiency while 3295 was sensitive to Mn deficiency, respectively. The restriction of root penetration intensified symptoms of Mn deficiency of the Mn-deficient sensitive genotype (3295). The experiment demonstrated that well-developed roots with a strong ability to penetrate into the Mn-rich deep soil layer might explain the better tolerance of Mn deficiency in the tolerant genotypes. 展开更多
关键词 Wheat GENOTYPE Manganese Root paddy soil
下载PDF
Aromatic compound degradation by iron reducing bacteria isolated from irrigated tropical paddy soils 被引量:6
12
作者 W.Reichardt 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第12期1487-1493,共7页
Forty-six candidate phenol/benzoate degrading-iron reducing bacteria were isolated from long term irrigated tropical paddy soils by enrichment procedures.Pure cultures and some prepared mixed cultures were examined fo... Forty-six candidate phenol/benzoate degrading-iron reducing bacteria were isolated from long term irrigated tropical paddy soils by enrichment procedures.Pure cultures and some prepared mixed cultures were examined for ferric oxide reduction and phenol/benzoate degradation.All the isolates were iron reducers,but only 56.5%could couple iron reduction to phenol and/or benzoate degradation,as evidenced by depletion of phenol and benzoate after one week incubation.Analysis of degradative capability using Biolog... 展开更多
关键词 aromatic compounds DEGRADATION iron reducing bacteria paddy soil
下载PDF
Rapid degradation of bensulfuron-methyl upon repeated application in paddy soils 被引量:4
13
作者 XIEXiao-mei LIUWei-ping ABIDSubhani 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第1期49-52,共4页
Rapid degradation of bensulfuron-methyl upon repeated application in paddy soils was studied. The results showed that the DT _ 50 of bensulfuron-methyl was reduced from 16 d to 9 d in soil with one-year bensulfuron-m... Rapid degradation of bensulfuron-methyl upon repeated application in paddy soils was studied. The results showed that the DT _ 50 of bensulfuron-methyl was reduced from 16 d to 9 d in soil with one-year bensulfuron-methyl application. Rapid bensulfuron-methyl degradation was happened to previously untreated soil by addition 5% rapid bensulfuron-methyl adapted soil and was inhibited following pre-treatment with broad-spectrum antibiotic chloramphenicol. In bensulfuron-methyl adapted soil mineralisation of 14 C labeled bensulfuron-methyl to 14 CO_2 occurred at a faster rate than with previously untreated soil. It was concluded that rapid bensulfuron-methyl degradation upon repeated application is probably linked to the adaptation of soil bacteria which can utilize bensulfuron-methyl as a source of carbon and energy. 展开更多
关键词 BENSULFURON-METHYL rapid degradation paddy soil
下载PDF
Sorption of pyrene on two paddy soils and their particle-size fractions 被引量:1
14
作者 LI Jiu-hai PAN Gen-xing 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第6期962-965,共4页
In the present study, the sorption of pyrene on two kinds of bulk paddy soils, Gleyic Stagnic Anthrosols, and Ferric accumulic Stagnic Anthrosols as well as their particle-size fractions was investigated. The sorption... In the present study, the sorption of pyrene on two kinds of bulk paddy soils, Gleyic Stagnic Anthrosols, and Ferric accumulic Stagnic Anthrosols as well as their particle-size fractions was investigated. The sorption isotherms fitted well with Freundlich equation. For both soils, the clay fraction( 〈 2μm) and coarse sand fraction(2000-250μm) had higher sorption capacity than fine sand fraction(250-20 μm) and silt fraction(20-2 μm). The IogKoc values obtained of each soil and its particle-size fractions were similar, proving that SOM content was a key factor affecting pyrene sorption. The Kd values showed a significant correlation with contents of dithionite-extractable Fe in both paddy soils and a good relationship with CEC in Gleyic Stagnic Anthrosols, indicating possible effects of surface properties of particle-size fractions on the sorption of pyrene. 展开更多
关键词 paddy soil particle-size fraction PAHS SORPTION
下载PDF
Influence of Biochar on Nitrogen Use Efficiency and Root Morphology of Rice-Seedling in Two Contrasting Paddy Soils 被引量:1
15
作者 Lei Chu Yu Zhang +2 位作者 Long Qian Dandan Zhu Haijun Sun 《Phyton-International Journal of Experimental Botany》 SCIE 2020年第4期1035-1042,共8页
Biochar may affect the root morphology and nitrogen(N)use efficiency(NUE)of rice at seedling stage,which has not been clearly verified until now.To clarify it,we conducted a pot experiment regarding to two soil types(... Biochar may affect the root morphology and nitrogen(N)use efficiency(NUE)of rice at seedling stage,which has not been clearly verified until now.To clarify it,we conducted a pot experiment regarding to two soil types(Hydragric Anthrosol and Haplic Acrisol),two biochar application rates(0.5 wt%and 1.5 wt%)and two rice varieties(common rice var.Xiushui134 and hybrid super rice var.Zhongkejiayou12-6)meanwhile.Seedling NUE of common rice Xiuhui134 was significantly increased(p<0.05)by 78.2%in Hydragric Anthrosol and by 91.4%in Haplic Acrisol following biochar addition with 1.5 wt%.However,biochar addition exerted no influence on seedling NUE of super rice Zhongkejiayou12-6 in both soils.Overall,0.09–0.10 units higher soil pH and 105–116%higher soil NH_(4)^(+)-N were observed in Xiushui134 growing two soils with 1.5 wt%biochar.In addition,improved root morphology(including longer root length,larger root surface area,bigger root volume,and more root tips)contributed to the higher seedling NUE of Xiushui134 in two soils.The soil pH and NH_(4)^(+)-N content,also the root morphology were influenced by biochar,which though could not thoroughly explained the NUE of Zhongkejiayou12-6.In conclusion,biochar application to paddy soil changed soil pH and NH_(4)^(+)-N content,root growth,and the consequent seedling NUE of rice,which effects are relative with rice cultivar,biochar addition rate,and soil type. 展开更多
关键词 Ammonium BIOCHAR nitrogen management rice paddy soil root morphology super rice
下载PDF
Predicting microbial extracellular electron transfer activity in paddy soils with soil physicochemical properties using machine learning
16
作者 OU JiaJun LUO XiaoShan +3 位作者 LIU JunYang HUANG LinYan ZHOU LiHua YUAN Yong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第1期259-270,共12页
Soil extracellular electron transfer(EET)is a pivotal biological process within the realm of soil.Unfortunately,EET suffers from a lack of predictive models.Herein,an intricately crafted machine learning model has bee... Soil extracellular electron transfer(EET)is a pivotal biological process within the realm of soil.Unfortunately,EET suffers from a lack of predictive models.Herein,an intricately crafted machine learning model has been developed for the purpose of predicting soil EET by using the physicochemical properties of soil as independent input variables and the EET capabilities in terms of current density(j_(max))and Coulombic charge(C_(out))as dependent output variables.An autoencoder ensemble stacking(AES)model was developed to address the aforementioned issue by integrating support vector machine,multilayer perceptron,extreme gradient boosting,and light gradient boosting machine algorithms as the stacking algorithms.With 10-fold crossvalidation,the AES model exhibited notable improvements in predicting j_(max)and C_(out),with average test R^(2)values of 0.83 and 0.84,respectively,surpassing those of single machine learning(ML)models and the basic ensemble model.By utilizing partial correlation plots(PDPs),Shapley Additive explanations(SHAP)values,and SHAP decision plots,we quantitatively explained the impact and contribution of the input molecules on the AES model’s predictions of j_(max)and C_(out).In the context of the SHAP method for the AES model,total carbon(TC)was identified as the most correlated descriptor for j_(max),while total organic carbon(TOC)stood out as the most relevant descriptor for C_(out).In the prediction tasks of j_(max)and C_(out)within the AES model,employing a multitask ML approach allowed the model to benefit from the shared information of input variables,thereby enhancing its overall generalizability.This study provides a feasible tool for the prediction of soil EET from soil physiochemical properties and an advanced understanding of the relationship between soil physiochemical properties and EET capability. 展开更多
关键词 extracellular electron transfer paddy soil machine learning prediction autoencoder ensemble stacking model
原文传递
Root exudates increased arsenic mobility and altered microbial community in paddy soils 被引量:2
17
作者 Ouyuan Jiang Lvyao Li +6 位作者 Guilan Duan Williamson Gustave Weiwei Zhai Lina Zou Xia An Xianjin Tang Jianming Xu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第5期410-420,共11页
Root exudates are crucial for plants returning organic matter to soils,which is assumed to be a major source of carbon for the soil microbial community.This study investigated the influence of root exudates on the fat... Root exudates are crucial for plants returning organic matter to soils,which is assumed to be a major source of carbon for the soil microbial community.This study investigated the influence of root exudates on the fate of arsenic(As)with a lab simulation experiment.Our findings suggested that root exudates had a dose effect on the soil physicochemical properties,As speciation transformation and the microbial community structure at different concentrations.The addition of root exudates increased the soil pH while decreased the soil redox potential(Eh).These changes in the soil pH and Eh increased As and ferrous(Fe(Ⅱ))concentrations in soil porewater.Results showed that 40 mg/L exudates addition significantly increased arsenite(As(Ⅲ))and arsenate(As(Ⅴ))by 541 and 10 times respectively within 30 days in soil porewater.The relative abundance of Fe(Ⅲ)-reducing bacteria Geobacter and Anaeromyxobacter increased with the addition of root exudates,which enhanced microbial Fe reduction.Together these results suggest that investigating how root exudates affect the mobility and transformation of As in paddy soils is helpful to systematically understand the biogeochemical cycle of As in soil-rice system,which is of great significance for reducing the health risk of soil As contamination. 展开更多
关键词 ARSENIC Root exudates paddy soils SPECIATION Microbial community
原文传递
Iron oxidation-reduction bioavailability in and its impacts on cadmium paddy soils: a review 被引量:10
18
作者 Chunhua ZHANG Ying GE +2 位作者 Huan YAO Xiao CHEN Minkun HU 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2012年第4期509-517,共9页
Redox conditions in paddy soils may vary as they are submerged and drained during rice growth. This change may bring about reductive dissolution of iron (Fe) oxides and subsequent formation of secondary Fe-bearing m... Redox conditions in paddy soils may vary as they are submerged and drained during rice growth. This change may bring about reductive dissolution of iron (Fe) oxides and subsequent formation of secondary Fe-bearing minerals in rice paddies. The mobility and bioavailability of metal contaminants such as cadmium (Cd) in paddy soils are closely related to the chemical behaviors of Fe. Therefore, in this paper, advances in the study of paddy Fe redox transformations and their effects on Cd availability to rice are briefly reviewed. Current concepts presented in this review include the forms of Fe in paddy soils, the reactions involved in Fe oxidation-reduction, chemical factors affecting Fe redox processes, Cd availability to rice and the impacts of Fe transformation on Cd uptake and translocation in rice. Prospects for future research in this area are also discussed. 展开更多
关键词 paddy soil redox iron CADMIUM bioavail- ability rice
原文传递
Greater promotion of DNRA rates and nrfA gene transcriptional activity by straw incorporation in alkaline than in acidic paddy soils 被引量:3
19
作者 Ren Bai Yun-Ting Fang +5 位作者 Liu-Ying Mo Ju-Pei Shen Lin-Lin Song Ya-Qi Wang Li-Mei Zhang Ji-Zheng He 《Soil Ecology Letters》 CAS 2020年第4期255-267,共13页
Dissimilarity nitrate reduction to ammonium(DNRA)is of significance in agriculture ecosystems as the process is beneficial to N retention in soils.However,how fertilization regimes influence DNRA rates and functional ... Dissimilarity nitrate reduction to ammonium(DNRA)is of significance in agriculture ecosystems as the process is beneficial to N retention in soils.However,how fertilization regimes influence DNRA rates and functional microbes in agriculture was rarely estimated.In the present study,a 2-year pot experiment was conducted in two contrasting paddy soils to evaluate the effects of straw and nitrogen addition on DNRA process and the related functional microbes,using stable isotope tracer and molecular ecology techniques.The results showed that the abundance and transcription activity of nitrite reductase encoding gene(nrfA)involved in DNRA process and DNRA rates were significantly higher in alkaline soils than in acidic soils.Straw incorporation significantly enhanced nrfA gene abundance and transcription activity,with a greater effect in alkaline soil than in acidic soil.The rates of DNRA,abundance and transcription activity of nrfA gene positively correlated to soil C/N and C/NO_(3)^(-) induced by straw application.Sequencing analysis based on nrfA gene transcript showed that Deltaproteobacteria was the most dominant group in both soil types(30.9%-67.4%),while Gammaproteobacteria,Chloroflexi,Actinobacteria were selectively enriched by straw incorporation.These results demonstrated that DNRA activity can be improved by straw return practice in paddy soils while the effect will vary among soil types due to differentiated functional microbial communities and edaphic properties. 展开更多
关键词 DNRA nrfA gene paddy soil STRAW Nitrate reduction
原文传递
Seven years of biochar amendment has a negligible effect on soil available P and a progressive effect on organic C in paddy soils 被引量:2
20
作者 Jiahui Yuan Yu Wang +3 位作者 Xu Zhao Hao Chen Guanglei Chen Shenqiang Wang 《Biochar》 SCIE 2022年第1期1161-1173,共13页
Little attention has been paid to how long-term application of crop straw and its biochar affects soil phosphorus(P)transformation and carbon(C)fractions.We conducted a 7-year field experiment including control treatm... Little attention has been paid to how long-term application of crop straw and its biochar affects soil phosphorus(P)transformation and carbon(C)fractions.We conducted a 7-year field experiment including control treatment(chemical fertilizer only,CK),straw return(2.25 t ha^(−1)),and different amounts of biochar addition(11.25 t ha^(−1)(0.5%BC)and 22.5 t ha^(−1)(1.0%BC),to investigate influence of these amendments on soil C structure,P fractions,and their interaction with microorganisms.The 13C nuclear magnetic resonance and soil P sequence fractionation were applied to capture changes of soil C compositions and P pool.Compared to CK,straw and biochar amendments decreased alkyl C/O-alkyl C,which is conducive to increased soil organic C.The 0.5%BC and 1.0%BC treatments enhanced recalcitrant aromatic C by 69.0%and 131%,respectively.Compared to CK(101.2±33.32 mg kg^(−1)),the 0.5%BC and 1.0%BC treatments had a negligible effect on soil available P,while negative effects were observed in straw treatment(59.79±9.023 mg kg^(−1)).Straw and biochar amendments increased primary P and occluded P,whereas had negligible effect on organic P.Redundancy analysis and correlation analysis indi-cated that C compositions and P pool correlated to microbial community composition and enzyme activities,and aromatic C was the most related factor.Moreover,structural equation modeling indicated available P was most related to phosphatase activity and C composition.Our findings reveal the changes of soil P and C response under long-term crop straw and its biochar amendment,and can contribute toward improving understanding of the effect of biochar and straw return in future agriculture management. 展开更多
关键词 BIOCHAR paddy soil Soil phosphorus fractionation Carbon composition Microorganisms
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部