期刊文献+
共找到55,260篇文章
< 1 2 250 >
每页显示 20 50 100
Perspectives in human brain plasticity sparked by glioma invasion:from intraoperative(re)mappings to neural reconfigurations
1
作者 Sam Ng Hugues Duffau Guillaume Herbet 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期947-948,共2页
Exploring the aptitude of the human brain to compensate functional consequences of a lesion damaging its structural architecture is a key challenge to improve patient care in various neurological diseases,to optimize ... Exploring the aptitude of the human brain to compensate functional consequences of a lesion damaging its structural architecture is a key challenge to improve patient care in various neurological diseases,to optimize neuroscientifically-informed strategies of postlesional rehabilitation,and ultimately to develop innovative neuro-regenerative therapies.The term‘plasticity’,initially referring to the intrinsic propensity of neurons to modulate their synaptic transmission in a learning situation,was progressively transposed to brain injury research and clinical neurosciences.Indeed,in the event of brain damage,adaptive mechanisms of compensation allow a partial reshaping of the structure and activities of the central nervous system,thus permitting to some extent the maintenance of brain functions. 展开更多
关键词 plasticity figuration consequences
下载PDF
Mitochondrial recruitment in myelin:an anchor for myelin dynamics and plasticity?
2
作者 Jean-David M.Gothié Timothy E.Kennedy 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1401-1402,共2页
Optimal propagation of neuronal electrical impulses depends on the insulation of axons by myelin,produced in the central nervous system by oligodendrocytes.Myelin is an extension of the oligodendrocyte plasma membrane... Optimal propagation of neuronal electrical impulses depends on the insulation of axons by myelin,produced in the central nervous system by oligodendrocytes.Myelin is an extension of the oligodendrocyte plasma membrane,which wraps around an axon to form a compact multi-layered sheath.Myelin is composed of a substantially higher proportion of lipids compared to other biological membranes and enriched in a small number of specialized proteins. 展开更多
关键词 plasticity insulation DYNAMICS
下载PDF
Glial progenitor heterogeneity and plasticity in the adult spinal cord
3
作者 Haichao Wei Jia Qian Wu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2567-2568,共2页
Glial progenitor cells were reported to have the capacity to generate various types of cells in both the central nervous system(CNS)and peripheral nervous system.Glial progenitor cells can respond to diverse environme... Glial progenitor cells were reported to have the capacity to generate various types of cells in both the central nervous system(CNS)and peripheral nervous system.Glial progenitor cells can respond to diverse environmental signals and transform into distinct populations,each serving specific functions.Notably,the adult spinal cord hosts various populations of glial progenitors,a region integral to the central nervous system.During development,glial progenitors express glial fibrillary acidic protein(GFAP;Dimou and Gotz,2014).However,the specific identities of GFAP-expressing progenitors in the adult spinal cord were not thoroughly investigated. 展开更多
关键词 functions plasticity thoroughly
下载PDF
From mice to humans:a need for comparable results in mammalian neuroplasticity
4
作者 Marco Ghibaudi Enrica Boda Luca Bonfanti 《Neural Regeneration Research》 SCIE CAS 2025年第2期464-466,共3页
Brain plasticity-A universal tool with many variations:The study of brain plasticity has been gaining interest since almost a century and has now reached a huge amount of information(>80,000 results in PubMed).Over... Brain plasticity-A universal tool with many variations:The study of brain plasticity has been gaining interest since almost a century and has now reached a huge amount of information(>80,000 results in PubMed).Overall,different types of plasticity,including stem cell-driven genesis of new neurons(adult neurogenesis),cells in arrested maturation(dormant neurons),neuro-glial and synaptic plasticity,can coexist and contribute to grant plastic changes in the brain,from a cellular to system level(Benedetti and Couillard-Despres,2022;Bonfanti et al.,2023). 展开更多
关键词 plasticity al. ARREST
下载PDF
Age-related differences in long-term potentiation-like plasticity and shortlatency afferent inhibition and their association with cognitive function
5
作者 Qian Lu Sisi Huang +7 位作者 Tianjiao Zhang Jie Song Manyu Dong Yilun Qian Jing Teng Tong Wang Chuan He Ying Shen 《General Psychiatry》 CSCD 2024年第1期73-82,共10页
Background The neurophysiological differences in cortical plasticity and cholinergic system function due to ageing and their correlation with cognitive function remain poorly understood.Aims To reveal the differences ... Background The neurophysiological differences in cortical plasticity and cholinergic system function due to ageing and their correlation with cognitive function remain poorly understood.Aims To reveal the differences in long-term potentiation(LTP)-like plasticity and short-latency afferent inhibition(SAl)between older and younger individuals,alongside their correlation with cognitive function using transcranial magnetic stimulation(TMS).Methods The cross-sectional study involved 31 younger adults aged 18-30 and 46 older adults aged 60-80.All participants underwent comprehensive cognitive assessments and a neurophysiological evaluation based on TMS.Cognitive function assessments included evaluations of global cognitive function,language,memory and executive function.The neurophysiological assessment included LTP-like plasticity and SAl.Results The findings of this study revealed a decline in LTP among the older adults compared with the younger adults(wald χ^(2)=3.98,p=0.046).Subgroup analysis further demonstrated a significant reduction in SAl level among individuals aged 70-80 years in comparison to both the younger adults(SAI(N20)):(t=-3.37,p=0.018);SAl(N20+4):(t=-3.13,p=0.038)and those aged 60-70(SAl(N20)):(t=3.26,p=0.025);SAl(N20+4):(t=-3.69,p=0.006).Conversely,there was no notable difference in SAl level between those aged 60-70 years and the younger group.Furthermore,after employing the Bonferroni correction,the correlation analysis revealed that only the positive correlation between LTP-like plasticity and language function(r=0.61,p<0.001)in the younger group remained statistically significant.Conclusions During the normal ageing process,a decline in synaptic plasticity may precede cholinergic system dysfunction.In individuals over 60 years of age,there is a reduction in LTP-like plasticity,while a decline in cholinergic system function is observed in those over 70.Thus,the cholinergic system may play a vital role in preventing cognitive decline during normal ageing.In younger individuals,LTP-like plasticity might represent a potential neurophysiological marker for language function. 展开更多
关键词 function YOUNGER plasticity
下载PDF
Timing effect of high temperature exposure on the plasticity of internode and plant architecture in maize
6
作者 Binbin Li Xianmin Chen +6 位作者 Tao Deng Xue Zhao Fang Li Bingchao Zhang Xin Wang Si Shen Shunli Zhou 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期551-565,共15页
The occurrence of high temperature(HT)in crop production is becoming more frequent and unpredictable with global warming,severely threatening food security.The state of an organ’s growth and development is largely de... The occurrence of high temperature(HT)in crop production is becoming more frequent and unpredictable with global warming,severely threatening food security.The state of an organ’s growth and development is largely determined by the temperature conditions it is exposed to over time.Maize is the main cereal crop,and its stem growth and plant architecture are closely related to lodging resistance,and especially sensitive to temperature.However,systematic research on the timing effect of HT on the sequentially developing internode and stem is currently lacking.To identify the timing effect of HT on the morphology and plasticity of the stem in maize,two hybrids(Zhengdan 958(ZD958),Xianyu 335(XY335))characterized by distinct morphological traits in the stem were exposed to a 7-day HT treatment from the V6 to V17 stages(Vn presents the vegetative stage with n leaves fully expanded)in 2019-2020.The results demonstrated that exposure to HT during V6-V12 accelerated the rapid elongation of stems.For instance,HT occurring at V7 and V12 specifically promoted the lengths and weights of the 3rd-5th and 9th-11th internodes,respectively.Meanwhile,HT slowed the growth of internodes adjacent to the promoted internodes.Interestingly,compared with control,the plant height was significantly increased soon after HT treatment,but the promotion effect became narrower at the subsequent flowering stage,demonstrating a self-adjusting mechanism in the maize plant in response to HT.Importantly,HT altered the plant architectures,including a rising of the ear position and increase in the ear position coefficient.XY335 exhibited greater sensitivity in stem development than ZD958 under HT treatment.These findings improve our systematic understanding of the plasticity of internode and plant architecture in response to the timing of HT exposure. 展开更多
关键词 MAIZE high temperature internode growth plasticity plant architecture
下载PDF
Superplasticity of fine-grained Mg-10Li alloy prepared by severe plastic deformation and understanding its deformation mechanisms
7
作者 H.T.Jeong S.W.Lee W.J.Kim 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期316-331,共16页
The superplastic behavior and associated deformation mechanisms of a fine-grained Mg-10.1 Li-0.8Al-0.6Zn alloy(LAZ1011)with a grain size of 3.2μm,primarily composed of the BCCβphase and a small amount of the HCPαph... The superplastic behavior and associated deformation mechanisms of a fine-grained Mg-10.1 Li-0.8Al-0.6Zn alloy(LAZ1011)with a grain size of 3.2μm,primarily composed of the BCCβphase and a small amount of the HCPαphase,were examined in a temperature range of 473 K to 623 K.The microstructural refinement of this alloy was achieved by employing high-ratio differential speed rolling.The best superplasticity was achieved at 523 K and at strain rates of 10^(-4)-5×10^(-4)s^(-1),where tensile elongations of 550±600%were obtained.During the heating and holding stage of the tensile samples prior to tensile loading,a significant increase in grain size was observed at temperatures above 573 K.Therefore,it was important to consider this effect when analyzing and understanding the superplastic deformation behavior and mechanisms.In the investigated strain rate range,the superplastic flow at low strain rates was governed by lattice diffusion-controlled grain boundary sliding,while at high strain rates,lattice diffusion-controlled dislocation climb creep was the rate-controlling deformation mechanism.It was concluded that solute drag creep is unlikely to occur.During the late stages of deformation at 523 K,it was observed that grain boundary sliding led to the agglomeration of theαphase,resulting in significant strain hardening.Deformation mechanism maps were constructed forβ-Mg-Li alloys in the form of 2D and 3D formats as a function of strain rate,stress,temperature,and grain size,using the constitutive equations for various deformation mechanisms derived based on the data of the current tests. 展开更多
关键词 Magnesium-lithium alloy SUPERplasticity Severe plastic deformation Grain size Grain growth
下载PDF
Anelasticity to plasticity transition in a model two-dimensional amorphous solid
8
作者 尚宝双 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期143-147,共5页
Anelasticity, as an intrinsic property of amorphous solids, plays a significant role in understanding their relaxation and deformation mechanism. However, due to the lack of long-range order in amorphous solids, the s... Anelasticity, as an intrinsic property of amorphous solids, plays a significant role in understanding their relaxation and deformation mechanism. However, due to the lack of long-range order in amorphous solids, the structural origin of anelasticity and its distinction from plasticity remain elusive. In this work, using frozen matrix method, we study the transition from anelasticity to plasticity in a two-dimensional model glass. Three distinct mechanical behaviors, namely,elasticity, anelasticity, and plasticity, are identified with control parameters in the amorphous solid. Through the study of finite size effects on these mechanical behaviors, it is revealed that anelasticity can be distinguished from plasticity.Anelasticity serves as an intrinsic bridge connecting the elasticity and plasticity of amorphous solids. Additionally, it is observed that anelastic events are localized, while plastic events are subextensive. The transition from anelasticity to plasticity is found to resemble the entanglement of long-range interactions between element excitations. This study sheds light on the fundamental nature of anelasticity as a key property of element excitations in amorphous solids. 展开更多
关键词 amorphous solid deformation mechanism anelasticity to plasticity transition molecular dynamics simulation
下载PDF
The interaction between KIF21A and KANK1 regulates dendritic morphology and synapse plasticity in neurons
9
作者 Shi-Yan Sun Lingyun Nie +5 位作者 Jing Zhang Xue Fang Hongmei Luo Chuanhai Fu Zhiyi Wei Ai-Hui Tang 《Neural Regeneration Research》 SCIE CAS 2025年第1期209-223,共15页
Morphological alterations in dendritic spines have been linked to changes in functional communication between neurons that affect learning and memory.Kinesin-4 KIF21A helps organize the microtubule-actin network at th... Morphological alterations in dendritic spines have been linked to changes in functional communication between neurons that affect learning and memory.Kinesin-4 KIF21A helps organize the microtubule-actin network at the cell cortex by interacting with KANK1;however,whether KIF21A modulates dendritic structure and function in neurons remains unknown.In this study,we found that KIF21A was distributed in a subset of dendritic spines,and that these KIF21A-positive spines were larger and more structurally plastic than KIF21A-negative spines.Furthermore,the interaction between KIF21A and KANK1 was found to be critical for dendritic spine morphogenesis and synaptic plasticity.Knockdown of either KIF21A or KANK1 inhibited dendritic spine morphogenesis and dendritic branching,and these deficits were fully rescued by coexpressing full-length KIF21A or KANK1,but not by proteins with mutations disrupting direct binding between KIF21A and KANK1 or binding between KANK1 and talin1.Knocking down KIF21A in the hippocampus of rats inhibited the amplitudes of long-term potentiation induced by high-frequency stimulation and negatively impacted the animals’cognitive abilities.Taken together,our findings demonstrate the function of KIF21A in modulating spine morphology and provide insight into its role in synaptic function. 展开更多
关键词 ACTIN CYTOSKELETON dendrite KANK1 KIF21A MICROTUBULE spine morphology SPINE synaptic plasticity talin1
下载PDF
Neural stem cells promote neuroplasticity: a promising therapeutic strategy for the treatment of Alzheimer’s disease
10
作者 Jun Chang Yujiao Li +4 位作者 Xiaoqian Shan Xi Chen Xuhe Yan Jianwei Liu Lan Zhao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期619-628,共10页
Recent studies have demonstrated that neuroplasticity,such as synaptic plasticity and neurogenesis,exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheime... Recent studies have demonstrated that neuroplasticity,such as synaptic plasticity and neurogenesis,exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheimer’s disease.Hence,promoting neuroplasticity may represent an effective strategy with which Alzheimer’s disease can be alleviated.Due to their significant ability to self-renew,differentiate,and migrate,neural stem cells play an essential role in reversing synaptic and neuronal damage,reducing the pathology of Alzheimer’s disease,including amyloid-β,tau protein,and neuroinflammation,and secreting neurotrophic factors and growth factors that are related to plasticity.These events can promote synaptic plasticity and neurogenesis to repair the microenvironment of the mammalian brain.Consequently,neural stem cells are considered to represent a potential regenerative therapy with which to improve Alzheimer’s disease and other neurodegenerative diseases.In this review,we discuss how neural stem cells regulate neuroplasticity and optimize their effects to enhance their potential for treating Alzheimer’s disease in the clinic. 展开更多
关键词 Alzheimer’s disease amyloid-β cell therapy extracellular vesicle neural stem cell synaptic plasticity tau
下载PDF
3'-Deoxyadenosin alleviates methamphetamine-induced aberrant synaptic plasticity and seeking behavior by inhibiting the NLRP3 inflammasome
11
作者 Yize Qi Yao Zhou +8 位作者 Jiyang Li Fangyuan Zhu Gengni Guo Can Wang Man Yu Yijie Wang Tengfei Ma Shanwu Feng Li Zhou 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2270-2280,共11页
Methamphetamine addiction is a brain disorder characterized by persistent drug-seeking behavior, which has been linked with aberrant synaptic plasticity. An increasing body of evidence suggests that aberrant synaptic ... Methamphetamine addiction is a brain disorder characterized by persistent drug-seeking behavior, which has been linked with aberrant synaptic plasticity. An increasing body of evidence suggests that aberrant synaptic plasticity is associated with the activation of the NOD-like receptor family pyrin domain containing-3(NLRP3) inflammasome. 3′-Deoxyadenosin, an active component of the Chinese fungus Cordyceps militaris, has strong anti-inflammatory effects. However, whether 3′-deoxyadenosin attenuates methamphetamine-induced aberrant synaptic plasticity via an NLRP3-mediated inflammatory mechanism remains unclear. We first observed that 3′-deoxyadenosin attenuated conditioned place preference scores in methamphetamine-treated mice and decreased the expression of c-fos in hippocampal neurons. Furthermore, we found that 3′-deoxyadenosin reduced the aberrant potentiation of glutamatergic transmission and restored the methamphetamine-induced impairment of synaptic plasticity. We also found that 3′-deoxyadenosin decreased the expression of NLRP3 and neuronal injury. Importantly, a direct NLRP3 deficiency reduced methamphetamine-induced seeking behavior, attenuated the impaired synaptic plasticity, and prevented neuronal damage. Finally, NLRP3 activation reversed the effect of 3′-deoxyadenosin on behavior and synaptic plasticity, suggesting that the anti-neuroinflammatory mechanism of 3′-deoxyadenosin on aberrant synaptic plasticity reduces methamphetamine-induced seeking behavior. Taken together, 3′-deoxyadenosin alleviates methamphetamine-induced aberrant synaptic plasticity and seeking behavior by inhibiting the NLRP3 inflammasome. 展开更多
关键词 3′-deoxyadenosin hippocampus long-term potentiation METHAMPHETAMINE NOD-like receptor family pyrin domain containing-3(NLRP3)inflammasome synaptic plasticity
下载PDF
Assessment of a two-surface plasticity model for hexagonal materials 被引量:1
12
作者 R.Vigneshwaran A.A.Benzerga 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4431-4444,共14页
A computationally efficient two-surface plasticity model is assessed against crystal plasticity. Focus is laid on the mechanical behavior of magnesium alloys in the presence of ductility-limiting defects, such as void... A computationally efficient two-surface plasticity model is assessed against crystal plasticity. Focus is laid on the mechanical behavior of magnesium alloys in the presence of ductility-limiting defects, such as voids. The two surfaces separately account for slip and twinning such that the constitutive formulation captures the evolving plastic anisotropy and evolving tension-compression asymmetry. For model identification, a procedure is proposed whereby the initial guess is based on a combination of experimental data and computationally intensive polycrystal calculations from the literature. In drawing direct comparisons with crystal plasticity, of which the proposed model constitutes a heuristically derived reduced-order model, the available crystal plasticity simulations are grouped in two datasets. A calibration set contains minimal data for both pristine and porous material subjected to one loading path. Then the two-surface model is assessed against a broader set of crystal plasticity simulations for voided unit cells under various stress states and two loading orientations. The assessment also includes microstructure evolution(rate of growth of porosity and void distortion). The ability of the two-surface model to capture essential features of crystal plasticity is analyzed along with an evaluation of computational cost. The prospects of using the model in guiding the development of physically sound damage models in Mg alloys are put forth in the context of high-throughput simulations. 展开更多
关键词 HCP metals plastic anisotropy Reduced order model Void growth Void coalescence
下载PDF
Astrocyte-neuron communication mediated by the Notch signaling pathway:focusing on glutamate transport and synaptic plasticity 被引量:1
13
作者 Ke-Xin Li Meng Lu +2 位作者 Meng-Xu Cui Xiao-Ming Wang Yang Zheng 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第10期2285-2290,共6页
Maintaining glutamate homeostasis after hypoxic ischemia is important for synaptic function and neural cell activity,and regulation of glutamate transport between astrocyte and neuron is one of the important modalitie... Maintaining glutamate homeostasis after hypoxic ischemia is important for synaptic function and neural cell activity,and regulation of glutamate transport between astrocyte and neuron is one of the important modalities for reducing glutamate accumulation.However,further research is needed to investigate the dynamic changes in and molecular mechanisms of glutamate transport and the effects of glutamate transport on synapses.The aim of this study was to investigate the regulatory mechanisms underlying Notch pathway mediation of glutamate transport and synaptic plasticity.In this study,Yorkshire neonatal pigs(male,age 3 days,weight 1.0–1.5 kg,n=48)were randomly divided into control(sham surgery group)and five hypoxic ischemia subgroups,according to different recovery time,which were then further subdivided into subgroups treated with dimethyl sulfoxide or a Notch pathway inhibitor(N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycine t-butyl ester).Once the model was established,immunohistochemistry,immunofluorescence staining,and western blot analyses of Notch pathway-related proteins,synaptophysin,and glutamate transporter were performed.Moreover,synapse microstructure was observed by transmission electron microscopy.At the early stage(6–12 hours after hypoxic ischemia)of hypoxic ischemic injury,expression of glutamate transporter excitatory amino acid transporter-2 and synaptophysin was downregulated,the number of synaptic vesicles was reduced,and synaptic swelling was observed;at 12–24 hours after hypoxic ischemia,the Notch pathway was activated,excitatory amino acid transporter-2 and synaptophysin expression was increased,and the number of synaptic vesicles was slightly increased.Excitatory amino acid transporter-2 and synaptophysin expression decreased after treatment with the Notch pathway inhibitor.This suggests that glutamate transport in astrocytes-neurons after hypoxic ischemic injury is regulated by the Notch pathway and affects vesicle release and synaptic plasticity through the expression of synaptophysin. 展开更多
关键词 ASTROCYTE astrocyte-neuron communication glutamate glutamate transporter hypoxic-ischemic injury magnetic resonance spectroscopy NEONATE Notch signaling pathway plasticity SYNAPSE
下载PDF
The first cavefish in the Dinaric Karst?Cave colonization made possible by phenotypic plasticity in Telestes karsticus 被引量:1
14
作者 MateoČupić Zoran Marčić +2 位作者 Marko Lukić Romana Gračan Helena Bilandžija 《Zoological Research》 SCIE CSCD 2023年第4期821-833,共13页
Cave animals are an excellent model system for studying adaptive evolution.At present,however,little is known about the mechanisms that enable surface colonizers to survive in the challenging environment of caves.One ... Cave animals are an excellent model system for studying adaptive evolution.At present,however,little is known about the mechanisms that enable surface colonizers to survive in the challenging environment of caves.One possibility is that these species have the necessary genetic background to respond with plastic changes to the pressures of underground habitats.To gain insight into this process,we conducted a comparative study with the fish species Telestes karsticus,which occurs in a hydrological system consisting of an interconnected stream and a cave.Results showed that T.karsticus resided year-round and spawned in Sušik cave,making it the first known cavefish in the Dinaric Karst.Cave and surface populations differed in morphological and physiological characteristics,as well as in patterns of gene expression without any evidence of genetic divergence.To test whether observed trait differences were plastic or genetic,we placed adult fish from both populations under light/dark or constant dark conditions.Common laboratory conditions erased all morphometric differences between the two morphs,suggesting phenotypic plasticity is driving the divergence of shape and size in wild fish.Lighter pigmentation and increased fat deposition exhibited by cave individuals were also observed in surface fish kept in the dark in the laboratory.Our study also revealed that specialized cave traits were not solely attributed to developmental plasticity,but also arose from adult responses,including acclimatization.Thus,we conclude that T.karsticus can adapt to cave conditions,with phenotypic plasticity playing an important role in the process of cave colonization. 展开更多
关键词 Maladaptive and adaptive phenotypic plasticity Troglobionts and stygobionts Endemic leuciscid fish ACCLIMATIZATION European cavefish Cave adaptations Gene expression differences
下载PDF
Repetitive transcranial magnetic stimulation promotes neurological functional recovery in rats with traumatic brain injury by upregulating synaptic plasticity-related proteins 被引量:2
15
作者 Fang-Fang Qian You-Hua He +3 位作者 Xiao-Hui Du Hua-Xiang Lu Ren-Hong He Jian-Zhong Fan 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第2期368-374,共7页
Studies have shown that repetitive transcra nial magnetic stimulation(rTMS)can enhance synaptic plasticity and improve neurological dysfunction.Howeve r,the mechanism through which rTMS can improve moderate traumatic ... Studies have shown that repetitive transcra nial magnetic stimulation(rTMS)can enhance synaptic plasticity and improve neurological dysfunction.Howeve r,the mechanism through which rTMS can improve moderate traumatic brain injury remains poorly understood.In this study,we established rat models of moderate traumatic brain injury using Feeney's weight-dropping method and treated them using rTMS.To help determine the mechanism of action,we measured levels of seve ral impo rtant brain activity-related proteins and their mRNA.On the injured side of the brain,we found that rTMS increased the protein levels and mRNA expression of brain-derived neurotrophic factor,tropomyosin receptor kinase B,N-methyl-D-aspartic acid receptor 1,and phosphorylated cAMP response element binding protein,which are closely associated with the occurrence of long-term potentiation.rTMS also partially reve rsed the loss of synaptophysin after injury and promoted the remodeling of synaptic ultrastructure.These findings suggest that upregulation of synaptic plasticity-related protein expression is the mechanism through which rTMS promotes neurological function recovery after moderate traumatic brain injury. 展开更多
关键词 brain-derived neurotrophic factor moderate traumatic brain injury neurological dysfunction neurological improvement N-methyl-D-aspartic acid receptor repetitive transcranial magnetic stimulation synaptic plasticity SYNAPTOPHYSIN traumatic brain injury TRKB
下载PDF
Boosting corticospinal system synaptic plasticity to recover motor functions
16
作者 Weiguo Song John H.Martin 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第10期2182-2183,共2页
An importa nt strategy to promote voluntary movements after motor system injury is to strengthen the connections between the motor cortex and muscles by taking advantage of the plasticity of the corticospinal motor sy... An importa nt strategy to promote voluntary movements after motor system injury is to strengthen the connections between the motor cortex and muscles by taking advantage of the plasticity of the corticospinal motor system.Many neuromodulation approaches are directed to activate the spinal cord and peripheral axons to strengthen muscle activation.We discuss in this perspective that,the cortex and spinal cord should be ta rgeted together to enhance cortex-to-musclefunction(Amer and Martin,2022). 展开更多
关键词 plasticity SYSTEM activation
下载PDF
Neuroplastin in Ca^(2+)signal regulation and plasticity of glutamatergic synapses
17
作者 Ayse Malci Xiao Lin +1 位作者 Yun Stone Shi Rodrigo Herrera-Molina 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1705-1706,共2页
The main function of neurons is information transmission in the form of action potentials.To fulfill this duty,neurons are connected functionally with each other via synapses,the microscopic structures where specializ... The main function of neurons is information transmission in the form of action potentials.To fulfill this duty,neurons are connected functionally with each other via synapses,the microscopic structures where specialized molecular machinery is strategically placed to release and receive neurotransmitters and to generate and extinguish calcium(Ca^(2+))signals.These synaptic molecular components are highly dynamic and they influence each other to confer structural and functional adaptability(plasticity)to neuronal communication(Biederer et al.,2017). 展开更多
关键词 plasticity specialized STRUCTURAL
下载PDF
Dissecting the effect of soil on plant phenology and berry transcriptional plasticity in two Italian grapevine varieties (Vitis vinifera L.).
18
作者 Alessandro Vannozzi Corrado Perin +9 位作者 Fabio Palumbo Marco Sandri Paola Zuccolotto Sara Zenoni Silvia Farinati Gianni Barcaccia Massimo Pindo Paolo Sonego Alessandro Cestaro Margherita Lucchin 《Horticulture Research》 SCIE CSCD 2023年第5期178-192,共15页
Grapevine embodies a fascinating species as regards phenotypic plasticity and genotype-per-environment interactions.The terroir,namely the set of agri-environmental factors to which a variety is subjected,can influenc... Grapevine embodies a fascinating species as regards phenotypic plasticity and genotype-per-environment interactions.The terroir,namely the set of agri-environmental factors to which a variety is subjected,can influence the phenotype at the physiological,molecular,and biochemical level,representing an important phenomenon connected to the typicality of productions.We investigated the determinants of plasticity by conducting a field-experiment where all terroir variables,except soil,were kept as constant as possible.We isolated the effect of soils collected from different areas,on phenology,physiology,and transcriptional responses of skin and flesh of a red and a white variety of great economic value:Corvina and Glera.Molecular results,together with physio-phenological parameters,suggest a specific effect of soil on grapevine plastic response,highlighting a higher transcriptional plasticity of Glera in respect to Corvina and a marked response of skin compared to flesh.Using a novel statistical approach,we identified clusters of plastic genes subjected to the specific influence of soil.These findings could represent an issue of applicative value,posing the basis for targeted agricultural practices to enhance the desired characteristics for any soil/cultivar combination,to improve vineyards management for a better resource usage and to valorize vineyards uniqueness maximizing the terroir-effect. 展开更多
关键词 SOIL plasticity EFFECT
下载PDF
Two-step model of paleohexaploidy, ancestral genome reshuffling and plasticity of heat shock response in Asteraceae
19
作者 Xiangming Kong Yan Zhang +14 位作者 Ziying Wang Shoutong Bao Yishan Feng Jiaqi Wang Zijian Yu Feng Long Zejia Xiao Yanan Hao Xintong Gao Yinfeng Li Yue Ding Jianyu Wang Tianyu Lei Chuanyuan Xu Jinpeng Wang 《Horticulture Research》 SCIE CSCD 2023年第6期82-95,共14页
An ancient hexaploidization event in the most but not all Asteraceae plants,may have been responsible for shaping the genomes of many horticultural,ornamental,and medicinal plants that promoting the prosperity of the ... An ancient hexaploidization event in the most but not all Asteraceae plants,may have been responsible for shaping the genomes of many horticultural,ornamental,and medicinal plants that promoting the prosperity of the largest angiosperm family on the earth.However,the duplication process of this hexaploidy,as well as the genomic and phenotypic diversity of extant Asteraceae plants caused by paleogenome reorganization,are still poorly understood.We analyzed 11 genomes from 10 genera in Asteraceae,and redated the Asteraceae common hexaploidization(ACH)event∼70.7–78.6 million years ago(Mya)and the Asteroideae specific tetraploidization(AST)event∼41.6–46.2 Mya.Moreover,we identified the genomic homologies generated from the ACH,AST and speciation events,and constructed a multiple genome alignment framework for Asteraceae.Subsequently,we revealed biased fractionations between the paleopolyploidization produced subgenomes,suggesting the ACH and AST both are allopolyplodization events.Interestingly,the paleochromosome reshuffling traces provided clear evidence for the two-step duplications of ACH event in Asteraceae.Furthermore,we reconstructed ancestral Asteraceae karyotype(AAK)that has 9 paleochromosomes,and revealed a highly flexible reshuffling of Asteraceae paleogenome.Of specific significance,we explored the genetic diversity of Heat Shock Transcription Factors(Hsfs)associated with recursive whole-genome polyploidizations,gene duplications,and paleogenome reshuffling,and revealed that the expansion of Hsfs gene families enable heat shock plasticity during the genome evolution of Asteraceae.Our study provides insights on polyploidy and paleogenome remodeling for the successful establishment of Asteraceae,and is helpful for further communication and exploration of the diversification of plant families and phenotypes. 展开更多
关键词 SHUFFLING shock plasticity
下载PDF
Erratum to "Celastrus paniculatus oil ameliorates synaptic plasticity in a rat model of attention deficit hyperactivity disorder"
20
《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2023年第4期184-184,共1页
In the article“Celastrus paniculatus oil ameliorates synaptic plasticity in a rat model of attention deficit hyperactivity disorder”published on pages 105-114,Issue 3,Volume 11 of Asian Pacific Journal of Tropical B... In the article“Celastrus paniculatus oil ameliorates synaptic plasticity in a rat model of attention deficit hyperactivity disorder”published on pages 105-114,Issue 3,Volume 11 of Asian Pacific Journal of Tropical Biomedicine,Figure 5 was incorrectly published. 展开更多
关键词 plasticity FIGURE Celastrus
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部