This paper develops a general hypercube-based key predistribution scheme for establishing pairwise keys between sensor nodes using polynomials, which is parameterized by the dimension of hypercube and the Hamming dist...This paper develops a general hypercube-based key predistribution scheme for establishing pairwise keys between sensor nodes using polynomials, which is parameterized by the dimension of hypercube and the Hamming distance threshold variables. The scheme addresses the weaknesses of existing key predistribution schemes, which have either worse security or lower efficiency. It exhibits a nice property--when the Hamming distance between any two neighboring sensor nodes is less than the pre-defined threshold, the pairwise key can be established directly. Extensive performance and security analysis shows that by increasing Hamming distance threshold value, we can trade off the resilience against node capture attack for higher probability of direct pairwise key establishment, so as to save the energy consumption which is the most important issue for sensor networks.展开更多
Wireless Sensor Network(WSN)has witnessed an unpredictable growth for the last few decades.It has many applications in various critical sectors such as real-time monitoring of nuclear power plant,disaster management,e...Wireless Sensor Network(WSN)has witnessed an unpredictable growth for the last few decades.It has many applications in various critical sectors such as real-time monitoring of nuclear power plant,disaster management,environment,military area etc.However,due to the distributed and remote deployment of sensor nodes in such networks,they are highly vulnerable to different security threats.The sensor network always needs a proficient key management scheme to secure data because of resourceconstrained nodes.Existing polynomial based key management schemes are simple,but the computational complexity is a big issue.Lucas polynomials,Fibonacci polynomials,Chebychev polynomials are used in Engineering,Physics,Combinatory and Numerical analysis etc.In this paper,we propose a key management scheme using(p,q)-Lucas polynomial to improve the security of WSN.In(p,q)-Lucas polynomial,p represents a random base number while q represents a substitute value of x in the polynomial.The value of p is unique,and q is different according to communication between nodes.Analysis of the proposed method on several parameters such as computational overhead,efficiency and storage cost have been performed and compared with existing related schemes.The analysis demonstrates that the proposed(p,q)-Lucas polynomial based key management scheme outperforms over other polynomials in terms of the number of keys used and efficiency.展开更多
An improved LEACH for heterogeneous wireless sensor networks is proposed. Nodes are distributed in a sensing area that is divided into a number of same equilateral hexagons. Heterogeneous nodes act as the cluster head...An improved LEACH for heterogeneous wireless sensor networks is proposed. Nodes are distributed in a sensing area that is divided into a number of same equilateral hexagons. Heterogeneous nodes act as the cluster heads and ordinary nodes act as those cluster sensors in all clusters. The structure of WSNs is a two-layer structure. The upper layer consists of all cluster heads and the lower layer consists of all ordinary sensors managed by their corresponding cluster heads. The cluster heads and the ordinary sensors establish their pairwise keys respectively through utilizing different methods. The arithmetic balances energy expense among all kinds of nodes, saves the node energy, and prolongs the life of wireless sensor networks. Additionally, Analysis demonstrates that the security of wireless sensor networks has been improved obviously even with some heterogeneous nodes.展开更多
基金Supported by the National High-Technology Research and Development Program of China (863 Program)(2006AA01Z422)the National Natural Science Foundation of China(60672102)
文摘This paper develops a general hypercube-based key predistribution scheme for establishing pairwise keys between sensor nodes using polynomials, which is parameterized by the dimension of hypercube and the Hamming distance threshold variables. The scheme addresses the weaknesses of existing key predistribution schemes, which have either worse security or lower efficiency. It exhibits a nice property--when the Hamming distance between any two neighboring sensor nodes is less than the pre-defined threshold, the pairwise key can be established directly. Extensive performance and security analysis shows that by increasing Hamming distance threshold value, we can trade off the resilience against node capture attack for higher probability of direct pairwise key establishment, so as to save the energy consumption which is the most important issue for sensor networks.
文摘Wireless Sensor Network(WSN)has witnessed an unpredictable growth for the last few decades.It has many applications in various critical sectors such as real-time monitoring of nuclear power plant,disaster management,environment,military area etc.However,due to the distributed and remote deployment of sensor nodes in such networks,they are highly vulnerable to different security threats.The sensor network always needs a proficient key management scheme to secure data because of resourceconstrained nodes.Existing polynomial based key management schemes are simple,but the computational complexity is a big issue.Lucas polynomials,Fibonacci polynomials,Chebychev polynomials are used in Engineering,Physics,Combinatory and Numerical analysis etc.In this paper,we propose a key management scheme using(p,q)-Lucas polynomial to improve the security of WSN.In(p,q)-Lucas polynomial,p represents a random base number while q represents a substitute value of x in the polynomial.The value of p is unique,and q is different according to communication between nodes.Analysis of the proposed method on several parameters such as computational overhead,efficiency and storage cost have been performed and compared with existing related schemes.The analysis demonstrates that the proposed(p,q)-Lucas polynomial based key management scheme outperforms over other polynomials in terms of the number of keys used and efficiency.
文摘An improved LEACH for heterogeneous wireless sensor networks is proposed. Nodes are distributed in a sensing area that is divided into a number of same equilateral hexagons. Heterogeneous nodes act as the cluster heads and ordinary nodes act as those cluster sensors in all clusters. The structure of WSNs is a two-layer structure. The upper layer consists of all cluster heads and the lower layer consists of all ordinary sensors managed by their corresponding cluster heads. The cluster heads and the ordinary sensors establish their pairwise keys respectively through utilizing different methods. The arithmetic balances energy expense among all kinds of nodes, saves the node energy, and prolongs the life of wireless sensor networks. Additionally, Analysis demonstrates that the security of wireless sensor networks has been improved obviously even with some heterogeneous nodes.