To guarantee the optimal reduct set, a heuristic reduction algorithm is proposed, which considers the distinguishing information between the members of each pair decision classes. Firstly the pairwise positive region ...To guarantee the optimal reduct set, a heuristic reduction algorithm is proposed, which considers the distinguishing information between the members of each pair decision classes. Firstly the pairwise positive region is defined, based on which the pairwise significance measure is calculated between the members of each pair classes. Finally the weighted pairwise significance of attribute is used as the attribute reduction criterion, which indicates the necessity of attributes very well. By introducing the noise tolerance factor, the new algorithm can tolerate noise to some extent. Experimental results show the advantages of our novel heuristic reduction algorithm over the traditional attribute dependency based algorithm.展开更多
基金Sponsored by the Ministerial Level Advanced Research Foundation(11415133)
文摘To guarantee the optimal reduct set, a heuristic reduction algorithm is proposed, which considers the distinguishing information between the members of each pair decision classes. Firstly the pairwise positive region is defined, based on which the pairwise significance measure is calculated between the members of each pair classes. Finally the weighted pairwise significance of attribute is used as the attribute reduction criterion, which indicates the necessity of attributes very well. By introducing the noise tolerance factor, the new algorithm can tolerate noise to some extent. Experimental results show the advantages of our novel heuristic reduction algorithm over the traditional attribute dependency based algorithm.