Sediment constitutes the fundamental basis for forming and evolving aeolian geomorphology.The characteristics of sediment particle size offer insights into the development and evolution of sandy terrain,making their s...Sediment constitutes the fundamental basis for forming and evolving aeolian geomorphology.The characteristics of sediment particle size offer insights into the development and evolution of sandy terrain,making their study critical to understanding aeolian geomorphology and sand control.In this study,we combined high-density collection of surface sediments in the Uzhumqin sand dunes and GIS spatial analysis to analyze the particle size parameters and changes in the spatial distribution of surface sediments in this region.In addition,we used an end-member analysis to identify the potential sources of the sediments.The results showed that surface sediments in the Uzhumqin sand dunes had distinct spatial distributions.Medium and coarse grain sands dominated the sediments in the dunes,and the mean grain size and the sorting coefficient generally increased along the prevailing wind direction,with high values in individual areas related to factors such as material sources and vegetation cover.Skewness was strongly influenced by factors such as landform change and human activity,and spatial variability became more complex.Kurtosis and the soil fractal dimension showed generally decreasing trends along the prevailing wind direction.With dune fixation,the contents of clay and powder particles in the soil increased;the mean particle size,the sorting coefficient,and the fractal dimension of the soil gradually increased,and the skewness and kurtosis gradually decreased.The end-member analysis results indicated the existence of five end-members(EM)in the dune sediments.EM 1 was a mixed component of wind-deposited fine sands and nearby fluvial sediments.EM 2 was the main component of sediments in the study area and was the result of sorting lake sediments by wind action and by the local topography.EM 3 may be a product of river flood deposition.EM 4 and EM 5 had coarser grain sizes.EM 4 was a lake-phase sediment product influenced by topographic and vegetation cover factors,and EM 5 was primarily a river and lake sediment product modified by weathering.The sediment particle size results from the study area indicate that the sediment in the sandy region is generally coarse due to multiple factors,including topography,climate,hydrology,and human activity.Sandy material in the study area originated from nearby,with very little sand being transported from long distances.展开更多
The latticed dunes in the Tengger Desert are widely distributed,and the sand-blocking fence placed here are highly susceptible to local failure due to complex wind-sand activities,posing a serious threat to the safe o...The latticed dunes in the Tengger Desert are widely distributed,and the sand-blocking fence placed here are highly susceptible to local failure due to complex wind-sand activities,posing a serious threat to the safe operation of the highway.To explore the local failure mechanism of sand-blocking fence in the latticed dune area,the local failure of sand-blocking fence in the latticed dune areas along the Wuhai-Maqin Highway in China was observed.Taking the first main ridge of the latticed dune as the placement location,the structure of the wind-sand flow field of sand-blocking fence placed at top,the bottom and the middle of windward slope was analyzed by Computational Fluid Dynamics(CFD).The results show that when placed at top of the first main ridge,the wind speed near the sand-blocking fence is the highest,up to 15.23 m/s.Therefore,the wind load strength on the sand barrier is correspondingly larger,up to 232.61 N∙m-2.As the strength of material continues to decrease,the nylon net is prone to breakage.The roots of the angle steel posts are susceptible to hollowing by vortex action,which can cause sand-blocking fence to fall over in strong wind conditions.When placed at the bottom of windward slope,wind speed drop near sand-blocking fence is greatest,with the decrease of 12.48-14.32 m/s compared to the original wind speed.This is highly likely to lead to large-scale deposition of sand particles and burial of the sand-blocking fence.When placed in the middle of windward slope,sand-blocking fence is subjected to less wind load strength(168.61N∙m-2)and sand particles are mostly deposited at the bottom of windward slope,with only a small amount of sand accumulating at the root of sand-blocking fence.Based on field observations and numerical modelling results,when the sand-blocking fence is placed in latticed dune area,it should be placed in the middle of the windward slope of the first main ridge as a matter of priority.Besides the sand-blocking fence should be placed at the top of the first main ridge,and sand fixing measures should be added.展开更多
In order to clarify the formation mechanism of linear dunes on the northern margin of Qarhan Salt Lake, northwestern China, we analyzed the grain-size and sorting parameters of the dune and interdune sands. The surfac...In order to clarify the formation mechanism of linear dunes on the northern margin of Qarhan Salt Lake, northwestern China, we analyzed the grain-size and sorting parameters of the dune and interdune sands. The surface sands (0-30 ram) from the dune base to the crest of both flanks and interdune corridors were sampled along transects from upwind to downwind through the dune field. The results indicated that the grain-size distribution differed at different positions between and within the dunes. The frequency curve for dune sands mainly showed a bimodal distribution, while the interdune sediments showed a trimodal distribution. The grain size distribution of the linear dunes showed a finer crest pattern, i.e. the crests were composed of sands that were generally finer, better sorted than those of base sands. In addition, at the dune field scale, the dune crest sands were tending to become much finer but sorting became worse along the downwind transects. However, the grain-size parameters of sediments in the interdune corridors showed no clear pattern. The results demonstrated that the grain size and sorting parameters exhibited a systematic change not only at the individual scale but also at the dune field scale. Our results quantitatively estimate the limited role of cohesive sediments on the formation of linear dune under unidirectional wind regime. More attention should be paid to a long-term wind regime observation, internal sedimentary structures and their formation ages.展开更多
The components of the primary elements in the dune sands for the MGS1 subsection of the Milanggouwan section in the Salawusu River valley, compared with those of modern dune sands, show that they were caused by East A...The components of the primary elements in the dune sands for the MGS1 subsection of the Milanggouwan section in the Salawusu River valley, compared with those of modern dune sands, show that they were caused by East Asian winter monsoon in the Mu Us desert during Holocene. The examined ages for the 11 layers of dune sands, based on the average sedimentary rate, are: 0 to 960, 1350-2240, 2470 to 3530, 4000 to 4180, 4290 to 4350, 4380 to 4760, 5040 to 5920, 6570 to 8270, 9020 to 9700, 9880 to 10160 and 10580 to 11080 a BP, respectively. The climatic events indicated by these dune sands are consistent with those records in the Huguangyan volcanic lake, Zoige peat bog, Hulu cave and Dunde ice core, particularly with the climatic fluctuations of the North Atlantic since 11 000 a BP. Among them, patterns from B0 to B8 correspond to the peak values of 0MD, 2D, 4D, 6D+8D+10D, 12D, 14D, 16D, 18D and 20D respectively. It might be caused by the North Atlantic ice age induced by the heat circulation, which strengthened the polar high pressure and Siberian-Mongolian high pressure and further led to the dominance of the winter monsoon over China's desert area.展开更多
Based on systematically monitoring plants on dune ridges in the southern part of the Gurbantunggut Desert in 2002, this paper, from the angle of dune stabilization by vegetation, describes ...Based on systematically monitoring plants on dune ridges in the southern part of the Gurbantunggut Desert in 2002, this paper, from the angle of dune stabilization by vegetation, describes the temporal and spatial distribution patterns of ephemeral plants on isolated sand dunes, analyses the natural invasion processes of ephemeral plants on human-disturbed sand surface and expounds the importance of ephemeral plants in stabilizing sand dune surface. A total of 45 plant species were identified in the study area, 29 of which are ephemeral plants. Ephemeral plants sprouted in early April and completed their life-circle within about two months. Just as aeolian sand activities came to the strongest stage from April to June in desert regions of northern Xinjiang, the total coverage of trees, shrubs and herbs of long vegetational period on most dune ridges was less than 10%, while the mean coverage of ephemeral plants reached 13.9% in April, 40.2% in May and 14.1% in June. Therefore ephemeral plants acted as the major contributor to dune surface stabilization in the Gurbantunggut Desert. Investigations of vegetation restoration on engineering-disturbed dune surface show that ephemeral plants first recolonized the disturbed dune surface.展开更多
The spatial and temporal changes in aeolian transport over a dune are fundamental factors that control the morphology of the dune. In the present study, we obtained direct field observations of aeolian transport over ...The spatial and temporal changes in aeolian transport over a dune are fundamental factors that control the morphology of the dune. In the present study, we obtained direct field observations of aeolian transport over a developing transverse dune at the Shapotou Aeolian Experiment Site in the southeastern part of China's Tengger Desert. The transport rate versus wind speed relationship relationships over flat surfaces and over dunes that are s complicated over a developing dune compared with the n equilibrium with the wind. We obtained trend lines for transport rate over the transverse dune versus distance. The transport rate generally increased from the toe to the crest above the stoss slope, but the difference in transport rate between the crest and the toe was smaller than those that have been proposed for taller dunes. The crest/toe ratio for transport rates therefore seems to depend greatly on dune height. Flux density profiles for different points above the dune at different wind speeds were well described by the exponential decay law, as has been proposed for saltation flux density profiles. Coefficients in the flux density profile function can be defined in terms of the transport rate and wind speed. However, the dependence of relative decay rate with height and average saltation height on wind speed was weaker than that observed in a wind tunnel and above a fiat surface. The preliminary results obtained in this study require more evidence from field observations to fully describe aeolian transport above developing dunes.展开更多
The western coast of Hainan Island exhibits a savanna landscape. Many types of sand dunes, including transverse dune ridges, longitudinal dune ridges, elliptical dunes, coppice dunes, and climbing dunes, are widely di...The western coast of Hainan Island exhibits a savanna landscape. Many types of sand dunes, including transverse dune ridges, longitudinal dune ridges, elliptical dunes, coppice dunes, and climbing dunes, are widely distributed in the coastal zone. In winter, high-frequency and high-energy NE winds (dominant winds) are prevalent, with a resultant drift direction (RDD) of S35.6°W. In spring, low-frequency and low-energy SW secondary winds prevail, with a RDD of N25.1°E. Wind tunnel simulations revealed that the airflow over the dune surface is the main factor controlling the erosion and deposition patterns of dune surfaces and the morphological development of dunes. In the region's bidirectional wind environment, with two seasonally distinct energy levels, the airflow over the surface of elliptical dunes, barchan dunes, and transverse dune ridges will exhibit a transverse pattern, whereas the airflow over longitudinal dunes ridges exhibits a lateral pattern and that over climbing dunes exhibits a climbing-circumfluent pattern. These patterns represent different dynamic processes. The coastal dunes on the western coast of Hainan Island are influenced by factors such as onshore winds, sand sources, coastal slopes, rivers, and forest shelter belts. The source of the sand that supplements these dunes particularly influences the development pattern: when there is more sand, the pattern shows positive equilibrium deposition between dune ridges and dunes; otherwise, it shows negative equilibrium deposition. The presence or absence of forest shelter belts also influences deposition and dune development patterns and transformation of dune forms. Coastal dunes and inland desert dunes experience similar dynamic processes, but the former have more diversified shapes and more complex formation mechanisms.展开更多
The grain size composition, distribution characteristics and spatial variation of eolian sand soil on distinct positions across two longitudinal dunes and interdune areas were studied by means of conventional grain si...The grain size composition, distribution characteristics and spatial variation of eolian sand soil on distinct positions across two longitudinal dunes and interdune areas were studied by means of conventional grain size analysis and geostatistical methods. In the study, 184 samples of eolian sand soil from the 0-30cm layer were systemically collected and measured from two longitudinal dunes and interdunes in the southern Gurbantunggut Desert. The results show that the dominant grain sizes are fine and very fine sands, and the differences of grain size compositions between the distinct geomorphologic positions are significant. The contents of clay and silt are highest on the interdune areas and lowest on the crests, and higher on the leeward slopes than on the windward slopes. The contents of very fine and fine sands are highest on the windward slopes and lowest on the crests. The contents of medium, coarse and very coarse sands are lowest on the interdune lands, and highest on the crests, and are identical on the two slopes. The coarser sizes (phi(1)) and mean sizes (Mz) for eolian sand soil all have a varying tendency from fine to coarse sizes with interdune area -> leeward slope -> windward slope -> crest, and the sorting (sigma) are poorly to well sorted. The results of geostatistical analysis reveal that phi(1), Mz and a values are moderately to strongly spatially autocorrelated. The values of the spatially correlated ranges are phi(1) < sigma < Mz. The spatial variation for these grain size parameters is significant across the longitudinal dune landscape. From the crests towards the bottom of the slope, there is a varying gradient of zonal distribution, and the gradient values on the leeward slopes are larger than sites on the windward slopes.展开更多
Intensive grazing in spring-summer has been responsible for environmental degradation of the Gurbantunggut Desert in recent years. The coverage of plants and biological crusts, sand surface stability and physicochemic...Intensive grazing in spring-summer has been responsible for environmental degradation of the Gurbantunggut Desert in recent years. The coverage of plants and biological crusts, sand surface stability and physicochemical characteristics of soil on the dune surface were conducted in 2002 (winter grazing) and 2005 (spring-summer grazing). The results showed that over 80% of the total area of the dune surface was covered by well-developed biological crusts and plants in 2002, when the interdune and middle to lower part of dune slopes were stabilized and only the crest had 10-40 m wide mobile belt. Affected by spring-summer grazing in 2005, over 80% of the total cover of biological crust was destructed and the plant coverage only reached 1/5 of that in 2002, especially the ephemeral plant cover had a great change. The value of sand transport potential in 2005 only reached 1/3 of that in 2002, but the total surface activity in 2005 was 1.6 times stronger than that in 2002. Meanwhile the mobile area began to expand from the dune top to the whole dune surface following spring-summer grazing. Compared with 2002, medium sand content of the dune surface soil increased by 13.9%, while that of fine and very fine sands decreased by 7.4% and 8.0% respectively in 2005 and the soil organic matter in 2005 was only about 1/2 of that in 2002. It is obvious that the presence of snow cover and frozen soil in winter could avoid the surface structure destruction in winter, while spring-summer grazing made excessive damage to biologic crusts and ephemeral plants. Spring is the main windy season in Gurbantunggut Desert and therefore intensive activity of dune surface occurred following spring-summer grazing, which led to a great loss of fine sand and organic matter. It can be seen that grazing season have a significant influence on the sustainable development of the desert ecosystem in Northwest China.展开更多
The formation and development of dunes depend on wind-blown sand movement which is affected by the characteristics of sand material, topography, wind regimes and other factors. In this paper, we investigated two sand ...The formation and development of dunes depend on wind-blown sand movement which is affected by the characteristics of sand material, topography, wind regimes and other factors. In this paper, we investigated two sand shadow dune groups in Shigatse and Za'gya Zangbo of Tibet and an individual dune in Da Qaidam of Qinghai, and analyzed their topographies and morphologies, and the physical characteristics of the sand, wind regime and sand transport. Formed under harsh conditions behind hills, these mature sand shadow dunes are hundreds of meters long, have significant ridges and crescent dunes downwind, and have a hill pass on one or both sides. Wind tunnel experiments revealed that the hill gap and wind velocity are important factors in the formation of these dunes Sand shadow dunes formed only when the gap spacing is two-thirds of the hill height. When wind velocities are 20 m/s, the sand body is divided into two parts. The hill pass allows the transport of sand by wind, creating a "nar- row-pipe effect", which causes the transported material to gradually accumulate in the center of the shadow zone. We observed that the following are needed for sand shadow dunes to form: (1) strong winds, sufficient sand, suitable obstacles and a dry climate; (2) one or both sides of the obstacle forming the shadow zone must have a hill pass; and (3) the windward side of the obstacle must have a wide, flat area, providing adequate spacing for wind flow and transport of material and the leeward side must have a sufficiently broad, flat area to allow the release of the transported material. Research results on these newly discovered dunes on the Qinghai-Tibet Plateau could contribute to the understanding of dune geomorphology.展开更多
The Salawusu Formation of Milanggouwan section in Salawusu River Valley includes 7 layers of paleo-mobile dune sands, and 4 layers of paleo-fixed and semi-fixed dune sands. Their structures have been observed and thei...The Salawusu Formation of Milanggouwan section in Salawusu River Valley includes 7 layers of paleo-mobile dune sands, and 4 layers of paleo-fixed and semi-fixed dune sands. Their structures have been observed and their grain size, surface textural features and several main chemical elements have been analyzed. The results showed that: 1) Some of the aeolian structural characteristics of these dune sands are similar to that of the recent dune sands. 2) They are also similar to the recent dune sands in grain size components, and parameters of Mz,σ, Sk and Kg, as well as in several main chemical components. 3) The scattergrams of Mz-σ and SiO2-Al2O3+TOFE and the probability curves of grain size showed that these paleo-dune sands are different from paleosols and fluvio-lacustrine facies, but are consistency with recent dune sands. 4) Quartz sands have well roundness and surface textural features such as dish-shaped pits, crescent-shaped pits, pockmarked pits, upturned cleavage plates, siliceous precipitates and siliceous crevasses, indicating that they had been carried for a long time by the wind. As the 11 layers of paleo-dune sands possess the aeolian characteristics in structure, grain size, surface textural features and chemical elements, the origin of their formation should be attributed to eolation.展开更多
Trees on sand dunes are more sensitive to environmental changes because sandy soils have extremely low water holding capacity and nutrient availability. We investigated the dynamics of soil respiration(Rs) for seconda...Trees on sand dunes are more sensitive to environmental changes because sandy soils have extremely low water holding capacity and nutrient availability. We investigated the dynamics of soil respiration(Rs) for secondary natural Litsea forest and plantations of casuarina,pine, acacia and eucalyptus. Results show that significant diurnal variations of Rsoccurred in autumn for the eucalyptus species and in summer for the pine species, with higher mean soil respiration at night. However, significant seasonal variations of Rswere found in all five forest stands. Rschanged exponentially with soil temperatures at the 10-cm depth; the models explain 43.3–77.0% of Rs variations. Positive relationships between seasonal Rsand soil moisture varied with stands. The correlations were significant only in the secondary forest, and the eucalyptus and pine plantations. The temperature sensitivity parameter(Q10 value) of Rsranged from 1.64 in casuarina plantation to 2.32 the in secondary forest; annual Rswas highest in the secondary forest and lowest in the pine plantation. The results indicate that soil temperatures and moisture are the primary environmental controls of soil respiration and mainly act through a direct influence on roots and microbial activity. Differences in root biomass, quality of litter,and soil properties(pH, total N, available P, and exchangeable Mg) were also significant factors.展开更多
Dune fields at the northern margin of the East Asian monsoon (EAM), are mosaics of mobile and vegetation-stabilized aeolian dunes. These sand dunes are highly sensitive to environmental change, thus the distribution...Dune fields at the northern margin of the East Asian monsoon (EAM), are mosaics of mobile and vegetation-stabilized aeolian dunes. These sand dunes are highly sensitive to environmental change, thus the distribution and the timing of their development may provide important clues to past environmental dynamics. Due to the strong wind erosion and dune migration, long and continuous stratigraphic records are seldom preserved. Synthesizing a large body of events, ultimately producing a relatively complete and high-resolution record, may be a proper method to investigate the dune development history and climate change. In this study, we synthesized a large body of luminescence ages for aeolian deposits from the Mu Us, Otindag, Horqin dune fields at the northern margin of the EAM. The results show that these dune fields, as a whole experienced a most extensive mobility during the early Holocene, followed by a widespread shift toward limited mobility and soil development in the mid-Holocene, and widespread reactivation occurred during late Holocene. The dune developments are directly linked to the effective moisture change controlled by the EAM changes, which respond to the low latitude summer insolation variation. The increased subsidence at the margin contrary to the core EAM, the delay from the feedback of the soil-vegetation-air coupled system, the increased evaporation due to the high temperature all play partial role in the lag of the margin EAM effective moisture change to the low latitude summer insolation. The asynchronous end of the wetter mid-Holocene mainly responds to the southeastwardly shift of the precipitation belt, while the regional sensitivity, response speed and internal feedback also contributed. The correspondence between dune records and North Atlantic drift-ice records of the rapid climate changes implies a close relationship between North Atlantic climate and the frequent dune activity at the northern margin of EAM.展开更多
Bedload sediment transport was estimated by the SEDTRANS96 model based on three-day hydrodynamics data obtained off the Dongfang coast in the Beibu Gulf during Typhoon Ketsana in September 2009. Bed- forms on the sea ...Bedload sediment transport was estimated by the SEDTRANS96 model based on three-day hydrodynamics data obtained off the Dongfang coast in the Beibu Gulf during Typhoon Ketsana in September 2009. Bed- forms on the sea floor off the Dongfang coast and internal structures of a typical dune were interpreted to evaluate storm influences on individual dunes and the dune field. Results indicated that flow forcings and related bedload transport were both strengthened significantly due to Typhoon Ketsana. The measurements and modeling results, which mainly included three different stages, presented noticeable phasic variation. The three stages were dominated by tidal current (Period I), tidal current combined with wind-induced waves (Period II), and swells combined with tidal current and seaward flows (Period III). This phasic varia- tion could be a common trait of hydrodynamics due to typhoons moving westwardly to the south of Hainan Island and Beibu Gulf in South China Sea. Results indicated that the maximum bedioad transport rate for every burst in Period III was almost 100 times larger than that in Period I and was ten times larger than that in Period II. However, the short-term increase in bedload transport induced by storms like Ketsana did not change the long-term evolution of dune morphology. Evidence was given by the internal structures of a typical dune, which revealed renewed modification under subsequent moderate conditions after storm ero- sion. Instead, storms may influence at different scales and regional allocation of sand dunes in some large areas because changes of the sea floor in large scales can hardly be recovered. More surveys during and after storm passage are also needed to document the level of positive contribution to forward migration.展开更多
Soil moisture is critical for vegetation growth in deserts.However,detailed data regarding the soil moisture distribution in space and time in the Gurbantunggut Desert of China have not yet been reported.In this study...Soil moisture is critical for vegetation growth in deserts.However,detailed data regarding the soil moisture distribution in space and time in the Gurbantunggut Desert of China have not yet been reported.In this study,we conducted a series of in situ observation experiments in a fixed sand dune at the southern edge of the Gurbantunggut Desert from February 2014 to October 2016,to explore the spatio-temporal variation of soil moisture content,investigate the impact of Haloxylon ammodendron(C.A.Mey.)Bungeon soil moisture content in its root zone,and examine the factors influencing the soil moisture spatial pattern.One-way analysis of variance,least significant difference tests and correlation analysis were used to analyze the data.The results revealed that the soil moisture content exhibited annual periodicity and the temporal variation of soil moisture content throughout a year could be divided into three periods,namely,a moisturegaining period,a moisture-losing period and a moisture-stable period.According to the temporal and spatial variability,the 0–400 cm soil profile could be divided into two layers:an active layer with moderate variability and a stable layer with weak variability.The temporal variability was larger than the spatial variability in the active layer,and the mean profile soil moisture content at different slope positions displayed the trend of decreasing with increasing relative height and mainly followed the order of interdune area>west and east slopes>slope top.The mean profile soil moisture content in the root zone of dead H.ammodendron individuals was significantly higher than that in the root zones of adult and young individuals,while the soil moisture content in the root zone of adult individuals was slightly higher than that in the root zone of young individuals with no significant difference.The spatial pattern of soil moisture was attributable to the combined effects of snowfall,vegetation and soil texture,whereas the effects of rainfall and evaporation were not significant.The findings may offer a foundation for the management of sandy soil moisture and vegetation restoration in arid areas.展开更多
The Crescent Moon Spring is a precious natural heritage. However, the dynamic characteristics of megadunes around the Crescent Moon Spring are not well known. This paper quantitatively studied the character- istics an...The Crescent Moon Spring is a precious natural heritage. However, the dynamic characteristics of megadunes around the Crescent Moon Spring are not well known. This paper quantitatively studied the character- istics and changes of megadunes around the Crescent Moon Spring by interpreting aerial photographs taken in 1985 and 2004 and analysing the dune crestlines and the wind data collected from 2011 to 2012. Results revealed that pyramid dunes were formed by a complex wind regime. The Crescent Moon Spring was not buried by shifting sands because of the stable wind regime and relative stability of pyramid dunes. The crestlines of the dunes around the spring moved northward between 1985 and 2004. The south-facing slip faces were also exposed to wind ero- sion, whereas the other faces were under deposition, thus indicating that the southerly wind was relatively en- hanced. Limiting the scale of tall windbreaks and architectures in the Dunhuang oasis at the north of the spring was necessary to maintain the dynamic equilibrium of the wind regime and sand transport.展开更多
Understanding the characteristics of soil seed banks in sand dunes is crucial to stabilize the dune systems and maintain the plant populations in deserts. In this study, we conducted a survey investigation in the fiel...Understanding the characteristics of soil seed banks in sand dunes is crucial to stabilize the dune systems and maintain the plant populations in deserts. In this study, we conducted a survey investigation in the field and a seed germination experiment in the laboratory to explore the characteristics of soil seed banks at various geomorphic positions of longitudinal sand dunes in the Gurbantunggut Desert, China. Totally, 17 plant species belonging to 17 genera and 9 families were identified in soil seed banks, and 35 plant species belonging to 34 genera and 17 families were identified in aboveground vegetation. Plant species richness in soil seed banks decreased with increasing soil depth. The highest species richness was presented in the upper slope of the windward slope and the lowest species richness was presented in the base of the windward slope. There was no significant difference in seed density of soil seed banks among the examined seven geomorphic positions. The highest seed density occurred in the lower slope of the leeward slope while the lowest occurred in the crest. Moreover, seed density decreased with increasing soil depth, being the highest in the upper soil layer (0-2 cm). For both soil seed banks and aboveground vegetation, there was no significant difference in Simpson's diversity index among the seven geomorphic positions; however, Shannon-Wiener diversity index and Pielou's evenness index showed significant differences among the seven geomorphic positions. Those results showed that although there was no significant difference in seed density of soil seed banks among the seven geomorphic positions, the geomorphic positions significantly affected the species richness, diversity and distribution of soil seed banks. Therefore, understanding the characteristics of soil seed banks at different geomorphic positions of sand dunes is essential to vegetation restoration or reestablishment. Furthermore, the Jaccard's similarity coefficients of plant species between soil seed banks and aboveground vegetation at the seven geomorphic positions were low, suggesting that vegetation restoration or reestablishment processes should be promoted through adding seeds to surface layers.展开更多
"Ejin Section" found in a typical vegetation-covered sand dune in Ejin Oasis was investigated. In this study, 263 samples were taken from the section for grain-size analysis, 25 for chemical analysis, 11 for ^14C da..."Ejin Section" found in a typical vegetation-covered sand dune in Ejin Oasis was investigated. In this study, 263 samples were taken from the section for grain-size analysis, 25 for chemical analysis, 11 for ^14C dating and 6 for scanning electron microscope (SEM). The results of the study indicate that 3 types of the sediments in the section can be identified, YS, LS and ST. YS, homogeneous yellow-brown dune sands, is equal to those of inland deserts, LS, loess-like sandy soils, is the same as the sandy loess in the middle Yellow River and modem falling dusts, and ST, sandy sediments interbeded with the deadwood and defoliation of Tamarix spp, represents the depositional process of the section interrupted by abrupt changes in climate. The Ejin Section has recorded the repeated dust-storms or sandstorms since 2500 yr BP and the peak periods of the dust-storms or sandstorms revealed by the section are consistent with the records of "dust rains" in historical literatures, indicating that the change of climate is a key factor to increase sandstorms or dust-storms, whereas, "artificial" factor may only be an accelerating one for desertification.展开更多
Litter phosphorus (P) return is important to maintain the P cycle and balance in the sandy land of arid areas. In this study, we determined the loss and return of litter P in sand dune areas and elucidated their rel...Litter phosphorus (P) return is important to maintain the P cycle and balance in the sandy land of arid areas. In this study, we determined the loss and return of litter P in sand dune areas and elucidated their relation- ship. We investigated litter production and litter P amount, and simulated leaf litter moving dynamics to understand the relationships between the loss of litter P and the total litter P, and between the return of litter P and the total litter P in active (AD), semi-stabilized (SSD) and stabilized (SD) dunes in Inner Mongolia, northeastern China. The vegetation litter P was 12.6, 94.5, and 201.6 mg P/m2 in AD, SSD, and SD, respectively. A significant movement and loss of leaf litter P with time occurred on the three types of sand dunes. As a result, the loss of P was 7.4, 46.9, and 69.8 mg P/m2 and the return of P was 5.5, 47.6, and 131.8 mg P/m2 in AD, SSD, and SD, respectively. The rela- tionship between both loss and return of P and total litter P in AD, SSD, and SD was revealed by linear regression. The slope of the regression line indicated the rate of loss or return of litter P. From AD to SD, the loss rate showed a declining slope (0.52, 0.32, and 0.17 for AD, SSD, and SD, respectively), and the return rate showed a rising slope (0.48, 0.67, and 0.83 for AD, SSD, and SD, respectively). The loss of litter P should be regarded in the local man- agement of vegetation and land in sand dune areas. Improved vegetation restoration measures are necessary to decrease litter P loss to maintain the stability of ecosystems in sand dune areas.展开更多
High-precision RTK GPS technology was used to survey the movements of typical coastal dunes, including a coastal crescent dune and a coastal transverse ridge, in the Feicuidao region of the Changli Gold Coast in Hebei...High-precision RTK GPS technology was used to survey the movements of typical coastal dunes, including a coastal crescent dune and a coastal transverse ridge, in the Feicuidao region of the Changli Gold Coast in Hebei Province in 2006-2008. Our data provide information on the direction, type, and velocity of coastal dune movements, and indicate that the coastal dunes in this re- gion are characterized as slow and landward advancing, with to-and-fro fluctuations. The bottom of the studied coastal transverse ridge was stable during the observation period but the position of its crest advanced eastward (seaward) during summer and au- tumn, and moved landward (westward) in winter and spring. Thus, its crest moved generally landward (westward) but fluctuated to-and-fro eastward and westward. In contrast, the entire coastal crescent dune advanced landward (westward) in a to-and-fro manner, and the velocity of its movement was faster than that of the transverse ridge dune. These results are mainly related to the wind conditions in the research area, the height and volume of the two types of coastal dunes.展开更多
基金This research was supported by the project"Research on Vegetation Restoration and Reconstruction Technology in the Ecologically Fragile Areas of Uzhumqin Sand Dunes"of the Science and Technology Program of Inner Mongolia Autonomous Region(2020GG0077).We are grateful to the Key Laboratory of Wind and Sand Physics and Sand Control Engineering of Inner Mongolia Autonomous Region for providing us with experimental equipment and space.We thank LetPub(www.letpub.com)for its linguistic assistance during the preparation of this manuscript.
文摘Sediment constitutes the fundamental basis for forming and evolving aeolian geomorphology.The characteristics of sediment particle size offer insights into the development and evolution of sandy terrain,making their study critical to understanding aeolian geomorphology and sand control.In this study,we combined high-density collection of surface sediments in the Uzhumqin sand dunes and GIS spatial analysis to analyze the particle size parameters and changes in the spatial distribution of surface sediments in this region.In addition,we used an end-member analysis to identify the potential sources of the sediments.The results showed that surface sediments in the Uzhumqin sand dunes had distinct spatial distributions.Medium and coarse grain sands dominated the sediments in the dunes,and the mean grain size and the sorting coefficient generally increased along the prevailing wind direction,with high values in individual areas related to factors such as material sources and vegetation cover.Skewness was strongly influenced by factors such as landform change and human activity,and spatial variability became more complex.Kurtosis and the soil fractal dimension showed generally decreasing trends along the prevailing wind direction.With dune fixation,the contents of clay and powder particles in the soil increased;the mean particle size,the sorting coefficient,and the fractal dimension of the soil gradually increased,and the skewness and kurtosis gradually decreased.The end-member analysis results indicated the existence of five end-members(EM)in the dune sediments.EM 1 was a mixed component of wind-deposited fine sands and nearby fluvial sediments.EM 2 was the main component of sediments in the study area and was the result of sorting lake sediments by wind action and by the local topography.EM 3 may be a product of river flood deposition.EM 4 and EM 5 had coarser grain sizes.EM 4 was a lake-phase sediment product influenced by topographic and vegetation cover factors,and EM 5 was primarily a river and lake sediment product modified by weathering.The sediment particle size results from the study area indicate that the sediment in the sandy region is generally coarse due to multiple factors,including topography,climate,hydrology,and human activity.Sandy material in the study area originated from nearby,with very little sand being transported from long distances.
文摘The latticed dunes in the Tengger Desert are widely distributed,and the sand-blocking fence placed here are highly susceptible to local failure due to complex wind-sand activities,posing a serious threat to the safe operation of the highway.To explore the local failure mechanism of sand-blocking fence in the latticed dune area,the local failure of sand-blocking fence in the latticed dune areas along the Wuhai-Maqin Highway in China was observed.Taking the first main ridge of the latticed dune as the placement location,the structure of the wind-sand flow field of sand-blocking fence placed at top,the bottom and the middle of windward slope was analyzed by Computational Fluid Dynamics(CFD).The results show that when placed at top of the first main ridge,the wind speed near the sand-blocking fence is the highest,up to 15.23 m/s.Therefore,the wind load strength on the sand barrier is correspondingly larger,up to 232.61 N∙m-2.As the strength of material continues to decrease,the nylon net is prone to breakage.The roots of the angle steel posts are susceptible to hollowing by vortex action,which can cause sand-blocking fence to fall over in strong wind conditions.When placed at the bottom of windward slope,wind speed drop near sand-blocking fence is greatest,with the decrease of 12.48-14.32 m/s compared to the original wind speed.This is highly likely to lead to large-scale deposition of sand particles and burial of the sand-blocking fence.When placed in the middle of windward slope,sand-blocking fence is subjected to less wind load strength(168.61N∙m-2)and sand particles are mostly deposited at the bottom of windward slope,with only a small amount of sand accumulating at the root of sand-blocking fence.Based on field observations and numerical modelling results,when the sand-blocking fence is placed in latticed dune area,it should be placed in the middle of the windward slope of the first main ridge as a matter of priority.Besides the sand-blocking fence should be placed at the top of the first main ridge,and sand fixing measures should be added.
基金funded by the National Natural Science Foundation of China (41171010, 41130533, 41301003)
文摘In order to clarify the formation mechanism of linear dunes on the northern margin of Qarhan Salt Lake, northwestern China, we analyzed the grain-size and sorting parameters of the dune and interdune sands. The surface sands (0-30 ram) from the dune base to the crest of both flanks and interdune corridors were sampled along transects from upwind to downwind through the dune field. The results indicated that the grain-size distribution differed at different positions between and within the dunes. The frequency curve for dune sands mainly showed a bimodal distribution, while the interdune sediments showed a trimodal distribution. The grain size distribution of the linear dunes showed a finer crest pattern, i.e. the crests were composed of sands that were generally finer, better sorted than those of base sands. In addition, at the dune field scale, the dune crest sands were tending to become much finer but sorting became worse along the downwind transects. However, the grain-size parameters of sediments in the interdune corridors showed no clear pattern. The results demonstrated that the grain size and sorting parameters exhibited a systematic change not only at the individual scale but also at the dune field scale. Our results quantitatively estimate the limited role of cohesive sediments on the formation of linear dune under unidirectional wind regime. More attention should be paid to a long-term wind regime observation, internal sedimentary structures and their formation ages.
基金National Basic Research Program of China, No.2004CB720206 National Natural Science Foundation of China, No.40772118+1 种基金 No.49971009 Knowledge Innovation Project of CAS, No.KZCX2-SW-118
文摘The components of the primary elements in the dune sands for the MGS1 subsection of the Milanggouwan section in the Salawusu River valley, compared with those of modern dune sands, show that they were caused by East Asian winter monsoon in the Mu Us desert during Holocene. The examined ages for the 11 layers of dune sands, based on the average sedimentary rate, are: 0 to 960, 1350-2240, 2470 to 3530, 4000 to 4180, 4290 to 4350, 4380 to 4760, 5040 to 5920, 6570 to 8270, 9020 to 9700, 9880 to 10160 and 10580 to 11080 a BP, respectively. The climatic events indicated by these dune sands are consistent with those records in the Huguangyan volcanic lake, Zoige peat bog, Hulu cave and Dunde ice core, particularly with the climatic fluctuations of the North Atlantic since 11 000 a BP. Among them, patterns from B0 to B8 correspond to the peak values of 0MD, 2D, 4D, 6D+8D+10D, 12D, 14D, 16D, 18D and 20D respectively. It might be caused by the North Atlantic ice age induced by the heat circulation, which strengthened the polar high pressure and Siberian-Mongolian high pressure and further led to the dominance of the winter monsoon over China's desert area.
基金The National Key Project for Basic Research No. G1999043504National Natural Science Foundation of China+3 种基金 No.90202019 The "Light of West China" Project for Talent Training CAS No. 20032057
文摘Based on systematically monitoring plants on dune ridges in the southern part of the Gurbantunggut Desert in 2002, this paper, from the angle of dune stabilization by vegetation, describes the temporal and spatial distribution patterns of ephemeral plants on isolated sand dunes, analyses the natural invasion processes of ephemeral plants on human-disturbed sand surface and expounds the importance of ephemeral plants in stabilizing sand dune surface. A total of 45 plant species were identified in the study area, 29 of which are ephemeral plants. Ephemeral plants sprouted in early April and completed their life-circle within about two months. Just as aeolian sand activities came to the strongest stage from April to June in desert regions of northern Xinjiang, the total coverage of trees, shrubs and herbs of long vegetational period on most dune ridges was less than 10%, while the mean coverage of ephemeral plants reached 13.9% in April, 40.2% in May and 14.1% in June. Therefore ephemeral plants acted as the major contributor to dune surface stabilization in the Gurbantunggut Desert. Investigations of vegetation restoration on engineering-disturbed dune surface show that ephemeral plants first recolonized the disturbed dune surface.
基金funding from the National Natural Science Foundation of China (41130533, 41171010)
文摘The spatial and temporal changes in aeolian transport over a dune are fundamental factors that control the morphology of the dune. In the present study, we obtained direct field observations of aeolian transport over a developing transverse dune at the Shapotou Aeolian Experiment Site in the southeastern part of China's Tengger Desert. The transport rate versus wind speed relationship relationships over flat surfaces and over dunes that are s complicated over a developing dune compared with the n equilibrium with the wind. We obtained trend lines for transport rate over the transverse dune versus distance. The transport rate generally increased from the toe to the crest above the stoss slope, but the difference in transport rate between the crest and the toe was smaller than those that have been proposed for taller dunes. The crest/toe ratio for transport rates therefore seems to depend greatly on dune height. Flux density profiles for different points above the dune at different wind speeds were well described by the exponential decay law, as has been proposed for saltation flux density profiles. Coefficients in the flux density profile function can be defined in terms of the transport rate and wind speed. However, the dependence of relative decay rate with height and average saltation height on wind speed was weaker than that observed in a wind tunnel and above a fiat surface. The preliminary results obtained in this study require more evidence from field observations to fully describe aeolian transport above developing dunes.
基金National Natural Science Foundation of China, No.40671186 No.40271012
文摘The western coast of Hainan Island exhibits a savanna landscape. Many types of sand dunes, including transverse dune ridges, longitudinal dune ridges, elliptical dunes, coppice dunes, and climbing dunes, are widely distributed in the coastal zone. In winter, high-frequency and high-energy NE winds (dominant winds) are prevalent, with a resultant drift direction (RDD) of S35.6°W. In spring, low-frequency and low-energy SW secondary winds prevail, with a RDD of N25.1°E. Wind tunnel simulations revealed that the airflow over the dune surface is the main factor controlling the erosion and deposition patterns of dune surfaces and the morphological development of dunes. In the region's bidirectional wind environment, with two seasonally distinct energy levels, the airflow over the surface of elliptical dunes, barchan dunes, and transverse dune ridges will exhibit a transverse pattern, whereas the airflow over longitudinal dunes ridges exhibits a lateral pattern and that over climbing dunes exhibits a climbing-circumfluent pattern. These patterns represent different dynamic processes. The coastal dunes on the western coast of Hainan Island are influenced by factors such as onshore winds, sand sources, coastal slopes, rivers, and forest shelter belts. The source of the sand that supplements these dunes particularly influences the development pattern: when there is more sand, the pattern shows positive equilibrium deposition between dune ridges and dunes; otherwise, it shows negative equilibrium deposition. The presence or absence of forest shelter belts also influences deposition and dune development patterns and transformation of dune forms. Coastal dunes and inland desert dunes experience similar dynamic processes, but the former have more diversified shapes and more complex formation mechanisms.
基金supported by the National Basic Research Program of China (2009CB825105)
文摘The grain size composition, distribution characteristics and spatial variation of eolian sand soil on distinct positions across two longitudinal dunes and interdune areas were studied by means of conventional grain size analysis and geostatistical methods. In the study, 184 samples of eolian sand soil from the 0-30cm layer were systemically collected and measured from two longitudinal dunes and interdunes in the southern Gurbantunggut Desert. The results show that the dominant grain sizes are fine and very fine sands, and the differences of grain size compositions between the distinct geomorphologic positions are significant. The contents of clay and silt are highest on the interdune areas and lowest on the crests, and higher on the leeward slopes than on the windward slopes. The contents of very fine and fine sands are highest on the windward slopes and lowest on the crests. The contents of medium, coarse and very coarse sands are lowest on the interdune lands, and highest on the crests, and are identical on the two slopes. The coarser sizes (phi(1)) and mean sizes (Mz) for eolian sand soil all have a varying tendency from fine to coarse sizes with interdune area -> leeward slope -> windward slope -> crest, and the sorting (sigma) are poorly to well sorted. The results of geostatistical analysis reveal that phi(1), Mz and a values are moderately to strongly spatially autocorrelated. The values of the spatially correlated ranges are phi(1) < sigma < Mz. The spatial variation for these grain size parameters is significant across the longitudinal dune landscape. From the crests towards the bottom of the slope, there is a varying gradient of zonal distribution, and the gradient values on the leeward slopes are larger than sites on the windward slopes.
基金National Basic Research Program of China,No.2009CB421303National Natural Science Foundation of China,No.40771032National Science Supporting Program,No.2007BAC17B03
文摘Intensive grazing in spring-summer has been responsible for environmental degradation of the Gurbantunggut Desert in recent years. The coverage of plants and biological crusts, sand surface stability and physicochemical characteristics of soil on the dune surface were conducted in 2002 (winter grazing) and 2005 (spring-summer grazing). The results showed that over 80% of the total area of the dune surface was covered by well-developed biological crusts and plants in 2002, when the interdune and middle to lower part of dune slopes were stabilized and only the crest had 10-40 m wide mobile belt. Affected by spring-summer grazing in 2005, over 80% of the total cover of biological crust was destructed and the plant coverage only reached 1/5 of that in 2002, especially the ephemeral plant cover had a great change. The value of sand transport potential in 2005 only reached 1/3 of that in 2002, but the total surface activity in 2005 was 1.6 times stronger than that in 2002. Meanwhile the mobile area began to expand from the dune top to the whole dune surface following spring-summer grazing. Compared with 2002, medium sand content of the dune surface soil increased by 13.9%, while that of fine and very fine sands decreased by 7.4% and 8.0% respectively in 2005 and the soil organic matter in 2005 was only about 1/2 of that in 2002. It is obvious that the presence of snow cover and frozen soil in winter could avoid the surface structure destruction in winter, while spring-summer grazing made excessive damage to biologic crusts and ephemeral plants. Spring is the main windy season in Gurbantunggut Desert and therefore intensive activity of dune surface occurred following spring-summer grazing, which led to a great loss of fine sand and organic matter. It can be seen that grazing season have a significant influence on the sustainable development of the desert ecosystem in Northwest China.
基金supported by the National Natural Science Foundation of China (40930741)National Basic Research Program of China (2012CB026105)
文摘The formation and development of dunes depend on wind-blown sand movement which is affected by the characteristics of sand material, topography, wind regimes and other factors. In this paper, we investigated two sand shadow dune groups in Shigatse and Za'gya Zangbo of Tibet and an individual dune in Da Qaidam of Qinghai, and analyzed their topographies and morphologies, and the physical characteristics of the sand, wind regime and sand transport. Formed under harsh conditions behind hills, these mature sand shadow dunes are hundreds of meters long, have significant ridges and crescent dunes downwind, and have a hill pass on one or both sides. Wind tunnel experiments revealed that the hill gap and wind velocity are important factors in the formation of these dunes Sand shadow dunes formed only when the gap spacing is two-thirds of the hill height. When wind velocities are 20 m/s, the sand body is divided into two parts. The hill pass allows the transport of sand by wind, creating a "nar- row-pipe effect", which causes the transported material to gradually accumulate in the center of the shadow zone. We observed that the following are needed for sand shadow dunes to form: (1) strong winds, sufficient sand, suitable obstacles and a dry climate; (2) one or both sides of the obstacle forming the shadow zone must have a hill pass; and (3) the windward side of the obstacle must have a wide, flat area, providing adequate spacing for wind flow and transport of material and the leeward side must have a sufficiently broad, flat area to allow the release of the transported material. Research results on these newly discovered dunes on the Qinghai-Tibet Plateau could contribute to the understanding of dune geomorphology.
基金National Basic Research Program of China, No.2004CB720206 National Natural Science Foundation of China, No.40772118+1 种基金 No.49971009 The RGC Grant of the HKSAR, No.HKU 7243/04H The authors appreciate Zhang Huanxin and Song Weijia, Sun Zhong and Wang Yuanping for their analyses of grain size, chemical elements and Surface texture characteristics of quartz sands. Gratitude is owed to Xiao Zhaodi and Zheng Jiefang for their valuable advice on translation.
文摘The Salawusu Formation of Milanggouwan section in Salawusu River Valley includes 7 layers of paleo-mobile dune sands, and 4 layers of paleo-fixed and semi-fixed dune sands. Their structures have been observed and their grain size, surface textural features and several main chemical elements have been analyzed. The results showed that: 1) Some of the aeolian structural characteristics of these dune sands are similar to that of the recent dune sands. 2) They are also similar to the recent dune sands in grain size components, and parameters of Mz,σ, Sk and Kg, as well as in several main chemical components. 3) The scattergrams of Mz-σ and SiO2-Al2O3+TOFE and the probability curves of grain size showed that these paleo-dune sands are different from paleosols and fluvio-lacustrine facies, but are consistency with recent dune sands. 4) Quartz sands have well roundness and surface textural features such as dish-shaped pits, crescent-shaped pits, pockmarked pits, upturned cleavage plates, siliceous precipitates and siliceous crevasses, indicating that they had been carried for a long time by the wind. As the 11 layers of paleo-dune sands possess the aeolian characteristics in structure, grain size, surface textural features and chemical elements, the origin of their formation should be attributed to eolation.
基金supported by the National Natural Science Foundation of China(31570604,41371269)The Basal Research Fund of Fujian provincial Public Scientific Research Institution support(2014R1011-7)the Casuarina Research Center of Engineering and Technology,and the Key Laboratory of Forest Culture and Forest Product Processing Utilization of Fujian Province
文摘Trees on sand dunes are more sensitive to environmental changes because sandy soils have extremely low water holding capacity and nutrient availability. We investigated the dynamics of soil respiration(Rs) for secondary natural Litsea forest and plantations of casuarina,pine, acacia and eucalyptus. Results show that significant diurnal variations of Rsoccurred in autumn for the eucalyptus species and in summer for the pine species, with higher mean soil respiration at night. However, significant seasonal variations of Rswere found in all five forest stands. Rschanged exponentially with soil temperatures at the 10-cm depth; the models explain 43.3–77.0% of Rs variations. Positive relationships between seasonal Rsand soil moisture varied with stands. The correlations were significant only in the secondary forest, and the eucalyptus and pine plantations. The temperature sensitivity parameter(Q10 value) of Rsranged from 1.64 in casuarina plantation to 2.32 the in secondary forest; annual Rswas highest in the secondary forest and lowest in the pine plantation. The results indicate that soil temperatures and moisture are the primary environmental controls of soil respiration and mainly act through a direct influence on roots and microbial activity. Differences in root biomass, quality of litter,and soil properties(pH, total N, available P, and exchangeable Mg) were also significant factors.
基金financially supported by the National Science Foundation of China(Grant No.41102102)"Strategic Priority Research Program"of the Chinese Academy of Sciences(Grant No.XDB03020300)the Key Research Program of the Chinese Academy of Sciences(Grant No.KZZD-EW-04-03)
文摘Dune fields at the northern margin of the East Asian monsoon (EAM), are mosaics of mobile and vegetation-stabilized aeolian dunes. These sand dunes are highly sensitive to environmental change, thus the distribution and the timing of their development may provide important clues to past environmental dynamics. Due to the strong wind erosion and dune migration, long and continuous stratigraphic records are seldom preserved. Synthesizing a large body of events, ultimately producing a relatively complete and high-resolution record, may be a proper method to investigate the dune development history and climate change. In this study, we synthesized a large body of luminescence ages for aeolian deposits from the Mu Us, Otindag, Horqin dune fields at the northern margin of the EAM. The results show that these dune fields, as a whole experienced a most extensive mobility during the early Holocene, followed by a widespread shift toward limited mobility and soil development in the mid-Holocene, and widespread reactivation occurred during late Holocene. The dune developments are directly linked to the effective moisture change controlled by the EAM changes, which respond to the low latitude summer insolation variation. The increased subsidence at the margin contrary to the core EAM, the delay from the feedback of the soil-vegetation-air coupled system, the increased evaporation due to the high temperature all play partial role in the lag of the margin EAM effective moisture change to the low latitude summer insolation. The asynchronous end of the wetter mid-Holocene mainly responds to the southeastwardly shift of the precipitation belt, while the regional sensitivity, response speed and internal feedback also contributed. The correspondence between dune records and North Atlantic drift-ice records of the rapid climate changes implies a close relationship between North Atlantic climate and the frequent dune activity at the northern margin of EAM.
基金A CAS(Chinese Academy of Sciences)and CNOOC(China National Offshore Oil Corporation)collaborative research project
文摘Bedload sediment transport was estimated by the SEDTRANS96 model based on three-day hydrodynamics data obtained off the Dongfang coast in the Beibu Gulf during Typhoon Ketsana in September 2009. Bed- forms on the sea floor off the Dongfang coast and internal structures of a typical dune were interpreted to evaluate storm influences on individual dunes and the dune field. Results indicated that flow forcings and related bedload transport were both strengthened significantly due to Typhoon Ketsana. The measurements and modeling results, which mainly included three different stages, presented noticeable phasic variation. The three stages were dominated by tidal current (Period I), tidal current combined with wind-induced waves (Period II), and swells combined with tidal current and seaward flows (Period III). This phasic varia- tion could be a common trait of hydrodynamics due to typhoons moving westwardly to the south of Hainan Island and Beibu Gulf in South China Sea. Results indicated that the maximum bedioad transport rate for every burst in Period III was almost 100 times larger than that in Period I and was ten times larger than that in Period II. However, the short-term increase in bedload transport induced by storms like Ketsana did not change the long-term evolution of dune morphology. Evidence was given by the internal structures of a typical dune, which revealed renewed modification under subsequent moderate conditions after storm ero- sion. Instead, storms may influence at different scales and regional allocation of sand dunes in some large areas because changes of the sea floor in large scales can hardly be recovered. More surveys during and after storm passage are also needed to document the level of positive contribution to forward migration.
基金supported by the National Natural Science Foundation of China (41671032, U1303181, U1806215)the National Key Research and Development Programs of China (2016YFC0501401, 2016YFD0200303, 2016YFC0501309, 2016YFC0501201)+1 种基金the National Basic Research Program of China (2013CB429902)the Key Deployment Project of the Chinese Academy of Sciences (KFZD-SW-112-03-02)
文摘Soil moisture is critical for vegetation growth in deserts.However,detailed data regarding the soil moisture distribution in space and time in the Gurbantunggut Desert of China have not yet been reported.In this study,we conducted a series of in situ observation experiments in a fixed sand dune at the southern edge of the Gurbantunggut Desert from February 2014 to October 2016,to explore the spatio-temporal variation of soil moisture content,investigate the impact of Haloxylon ammodendron(C.A.Mey.)Bungeon soil moisture content in its root zone,and examine the factors influencing the soil moisture spatial pattern.One-way analysis of variance,least significant difference tests and correlation analysis were used to analyze the data.The results revealed that the soil moisture content exhibited annual periodicity and the temporal variation of soil moisture content throughout a year could be divided into three periods,namely,a moisturegaining period,a moisture-losing period and a moisture-stable period.According to the temporal and spatial variability,the 0–400 cm soil profile could be divided into two layers:an active layer with moderate variability and a stable layer with weak variability.The temporal variability was larger than the spatial variability in the active layer,and the mean profile soil moisture content at different slope positions displayed the trend of decreasing with increasing relative height and mainly followed the order of interdune area>west and east slopes>slope top.The mean profile soil moisture content in the root zone of dead H.ammodendron individuals was significantly higher than that in the root zones of adult and young individuals,while the soil moisture content in the root zone of adult individuals was slightly higher than that in the root zone of young individuals with no significant difference.The spatial pattern of soil moisture was attributable to the combined effects of snowfall,vegetation and soil texture,whereas the effects of rainfall and evaporation were not significant.The findings may offer a foundation for the management of sandy soil moisture and vegetation restoration in arid areas.
基金funded by the National Key Technology R&D Program of China (2013BAC07B02)the National Natural Science Foundation of China (41071009)the West Light Foundation of Chinese Academy of Sciences (29Y128841)
文摘The Crescent Moon Spring is a precious natural heritage. However, the dynamic characteristics of megadunes around the Crescent Moon Spring are not well known. This paper quantitatively studied the character- istics and changes of megadunes around the Crescent Moon Spring by interpreting aerial photographs taken in 1985 and 2004 and analysing the dune crestlines and the wind data collected from 2011 to 2012. Results revealed that pyramid dunes were formed by a complex wind regime. The Crescent Moon Spring was not buried by shifting sands because of the stable wind regime and relative stability of pyramid dunes. The crestlines of the dunes around the spring moved northward between 1985 and 2004. The south-facing slip faces were also exposed to wind ero- sion, whereas the other faces were under deposition, thus indicating that the southerly wind was relatively en- hanced. Limiting the scale of tall windbreaks and architectures in the Dunhuang oasis at the north of the spring was necessary to maintain the dynamic equilibrium of the wind regime and sand transport.
基金financially supported by the National Natural Science Foundation of China(41571256)the National Natural Science Foundation of China–Xinjiang Mutual Funds(U1503101)the Natural Science Foundation of Xinjiang,China(2015211C292)
文摘Understanding the characteristics of soil seed banks in sand dunes is crucial to stabilize the dune systems and maintain the plant populations in deserts. In this study, we conducted a survey investigation in the field and a seed germination experiment in the laboratory to explore the characteristics of soil seed banks at various geomorphic positions of longitudinal sand dunes in the Gurbantunggut Desert, China. Totally, 17 plant species belonging to 17 genera and 9 families were identified in soil seed banks, and 35 plant species belonging to 34 genera and 17 families were identified in aboveground vegetation. Plant species richness in soil seed banks decreased with increasing soil depth. The highest species richness was presented in the upper slope of the windward slope and the lowest species richness was presented in the base of the windward slope. There was no significant difference in seed density of soil seed banks among the examined seven geomorphic positions. The highest seed density occurred in the lower slope of the leeward slope while the lowest occurred in the crest. Moreover, seed density decreased with increasing soil depth, being the highest in the upper soil layer (0-2 cm). For both soil seed banks and aboveground vegetation, there was no significant difference in Simpson's diversity index among the seven geomorphic positions; however, Shannon-Wiener diversity index and Pielou's evenness index showed significant differences among the seven geomorphic positions. Those results showed that although there was no significant difference in seed density of soil seed banks among the seven geomorphic positions, the geomorphic positions significantly affected the species richness, diversity and distribution of soil seed banks. Therefore, understanding the characteristics of soil seed banks at different geomorphic positions of sand dunes is essential to vegetation restoration or reestablishment. Furthermore, the Jaccard's similarity coefficients of plant species between soil seed banks and aboveground vegetation at the seven geomorphic positions were low, suggesting that vegetation restoration or reestablishment processes should be promoted through adding seeds to surface layers.
基金National Basic Research Program of China, No.2004CB720206 Knowledge Innovation Project of CAS, No.KZCX2-SW-118
文摘"Ejin Section" found in a typical vegetation-covered sand dune in Ejin Oasis was investigated. In this study, 263 samples were taken from the section for grain-size analysis, 25 for chemical analysis, 11 for ^14C dating and 6 for scanning electron microscope (SEM). The results of the study indicate that 3 types of the sediments in the section can be identified, YS, LS and ST. YS, homogeneous yellow-brown dune sands, is equal to those of inland deserts, LS, loess-like sandy soils, is the same as the sandy loess in the middle Yellow River and modem falling dusts, and ST, sandy sediments interbeded with the deadwood and defoliation of Tamarix spp, represents the depositional process of the section interrupted by abrupt changes in climate. The Ejin Section has recorded the repeated dust-storms or sandstorms since 2500 yr BP and the peak periods of the dust-storms or sandstorms revealed by the section are consistent with the records of "dust rains" in historical literatures, indicating that the change of climate is a key factor to increase sandstorms or dust-storms, whereas, "artificial" factor may only be an accelerating one for desertification.
基金supported by the National Natural Science Foundation of China(30800163)
文摘Litter phosphorus (P) return is important to maintain the P cycle and balance in the sandy land of arid areas. In this study, we determined the loss and return of litter P in sand dune areas and elucidated their relation- ship. We investigated litter production and litter P amount, and simulated leaf litter moving dynamics to understand the relationships between the loss of litter P and the total litter P, and between the return of litter P and the total litter P in active (AD), semi-stabilized (SSD) and stabilized (SD) dunes in Inner Mongolia, northeastern China. The vegetation litter P was 12.6, 94.5, and 201.6 mg P/m2 in AD, SSD, and SD, respectively. A significant movement and loss of leaf litter P with time occurred on the three types of sand dunes. As a result, the loss of P was 7.4, 46.9, and 69.8 mg P/m2 and the return of P was 5.5, 47.6, and 131.8 mg P/m2 in AD, SSD, and SD, respectively. The rela- tionship between both loss and return of P and total litter P in AD, SSD, and SD was revealed by linear regression. The slope of the regression line indicated the rate of loss or return of litter P. From AD to SD, the loss rate showed a declining slope (0.52, 0.32, and 0.17 for AD, SSD, and SD, respectively), and the return rate showed a rising slope (0.48, 0.67, and 0.83 for AD, SSD, and SD, respectively). The loss of litter P should be regarded in the local man- agement of vegetation and land in sand dune areas. Improved vegetation restoration measures are necessary to decrease litter P loss to maintain the stability of ecosystems in sand dune areas.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40571019 and 40971007)
文摘High-precision RTK GPS technology was used to survey the movements of typical coastal dunes, including a coastal crescent dune and a coastal transverse ridge, in the Feicuidao region of the Changli Gold Coast in Hebei Province in 2006-2008. Our data provide information on the direction, type, and velocity of coastal dune movements, and indicate that the coastal dunes in this re- gion are characterized as slow and landward advancing, with to-and-fro fluctuations. The bottom of the studied coastal transverse ridge was stable during the observation period but the position of its crest advanced eastward (seaward) during summer and au- tumn, and moved landward (westward) in winter and spring. Thus, its crest moved generally landward (westward) but fluctuated to-and-fro eastward and westward. In contrast, the entire coastal crescent dune advanced landward (westward) in a to-and-fro manner, and the velocity of its movement was faster than that of the transverse ridge dune. These results are mainly related to the wind conditions in the research area, the height and volume of the two types of coastal dunes.