The scientific community is continuously working to translate the novel biomedical techniques into effective medical treatments.CRISPR-Cas9 system(Clustered Regularly Interspaced Short Palindromic Repeats-9),commonly ...The scientific community is continuously working to translate the novel biomedical techniques into effective medical treatments.CRISPR-Cas9 system(Clustered Regularly Interspaced Short Palindromic Repeats-9),commonly known as the“molecular scissor”,represents a recently developed biotechnology able to improve the quality and the efficacy of traditional treatments,related to several human diseases,such as chronic diseases,neurodegenerative pathologies and,interestingly,oral diseases.Of course,dental medicine has notably increased the use of biotechnologies to ensure modern and conservative approaches:in this landscape,the use of CRISPR-Cas9 system may speed and personalize the traditional therapies,ensuring a good predictability of clinical results.The aim of this critical overview is to provide evidence on CRISPR efficacy,taking into specific account its applications in oral medicine.展开更多
The advancement of Clustered Regularly Interspaced Short Palindromic Repeats(CRISPR)gene editing technology has revolutionized the comprehension of human genome,propelling molecular and cellular biology research into ...The advancement of Clustered Regularly Interspaced Short Palindromic Repeats(CRISPR)gene editing technology has revolutionized the comprehension of human genome,propelling molecular and cellular biology research into unexplored realms and accelerating progress in life sciences and medicine.CRISPR-based gene screening,recognized for its efficiency and practicality,is widely utilized across diverse biological fields.Aging is a multifaceted process governed by a myriad of genetic and epigenetic factors.Unraveling the genes regulating aging holds promise for understanding this intricate phenomenon and devising strategies for its assessment and intervention.This review provides a comprehensive overview of the progress in CRISPR screening and its applications in aging research,while also offering insights into future directions.CRISPR-based genetic-manipulation tools are positioned as indispensable instruments for mitigating aging and managing age-related diseases.展开更多
Hepatocyte nuclear factor 1 alpha(HNF1A),hepatocyte nuclear factor 4 alpha(HNF4A),and forkhead box protein A2(FOXA2)are key transcription factors that regulate a complex gene network in the liver,cre-ating a regulator...Hepatocyte nuclear factor 1 alpha(HNF1A),hepatocyte nuclear factor 4 alpha(HNF4A),and forkhead box protein A2(FOXA2)are key transcription factors that regulate a complex gene network in the liver,cre-ating a regulatory transcriptional loop.The Encode and ChIP-Atlas databases identify the recognition sites of these transcription factors in many glycosyltransferase genes.Our in silico analysis of HNF1A,HNF4A.and FOXA2 binding to the ten candidate glyco-genes studied in this work confirms a significant enrich-ment of these transcription factors specifically in the liver.Our previous studies identified HNF1A as a master regulator of fucosylation,glycan branching,and galactosylation of plasma glycoproteins.Here,we aimed to functionally validate the role of the three transcription factors on downstream glyco-gene transcriptional expression and the possible effect on glycan phenotype.We used the state-of-the-art clus-tered regularly interspaced short palindromic repeats/dead Cas9(CRISPR/dCas9)molecular tool for the downregulation of the HNF1A,HNF4A,and FOXA2 genes in HepG2 cells-a human liver cancer cell line.The results show that the downregulation of all three genes individually and in pairs affects the transcrip-tional activity of many glyco-genes,although downregulation of glyco-genes was not always followed by an unambiguous change in the corresponding glycan structures.The effect is better seen as an overall change in the total HepG2 N-glycome,primarily due to the extension of biantennary glycans.We propose an alternative way to evaluate the N-glycome composition via estimating the overall complexity of the glycome by quantifying the number of monomers in each glycan structure.We also propose a model showing feedback loops with the mutual activation of HNF1A-FOXA2 and HNF4A-FOXA2 affecting glyco-genes and protein glycosylation in HepG2 cells.展开更多
目的:利用成簇规律性间隔短回文重复序列(clustered regularly interspaced short palindromic repeat,CRISPR)相关蛋白9(CRISP associated protein 9,Cas9)技术构建微小核糖核酸-551b(miR-551b)基因敲除小鼠模型。方法:选择健康C57BL/6...目的:利用成簇规律性间隔短回文重复序列(clustered regularly interspaced short palindromic repeat,CRISPR)相关蛋白9(CRISP associated protein 9,Cas9)技术构建微小核糖核酸-551b(miR-551b)基因敲除小鼠模型。方法:选择健康C57BL/6J小鼠,针对miR-551b外显子1区域,设计导向RNA(guide RNA,gRNA),构建Cas9载体质粒,将体外转录的Cas9 RNA及gRNA显微注射入小鼠的受精卵并体外培养。将培养合格的胚胎移植到代孕小鼠的输卵管中,待小鼠生育后得到F0代小鼠,使用基因测序确定基因敲除情况,与野生型小鼠繁育后,得到F1代杂合小鼠,F1代小鼠经自交繁育获得F2代小鼠,F3代小鼠由F2代纯合小鼠自交获得,采用电泳鉴定小鼠基因型,RT-PCR检测F3代小鼠组织miR-551b的表达。结果:利用CRISPR/Cas9技术构建模型小鼠得到F0代小鼠,通过测序筛选出缺失目标序列的F0代杂合子小鼠。与WT小鼠繁育后,琼脂糖凝胶电泳及测序筛选出F1代杂合小鼠,同样的方法鉴定并获得F2、F3代基因敲除小鼠,获取F3代纯合小鼠的心脏及下腔静脉样本,RT-PCR结果证实F3代纯合小鼠miR551b表达明显低于WT小鼠(P<0.05),成功敲除miR-551b基因。结论:通过CRISPR-Cas9技术成功构建miR⁃155基因敲除小鼠模型并稳定遗传,为进一步研究提供了有利条件。展开更多
文摘The scientific community is continuously working to translate the novel biomedical techniques into effective medical treatments.CRISPR-Cas9 system(Clustered Regularly Interspaced Short Palindromic Repeats-9),commonly known as the“molecular scissor”,represents a recently developed biotechnology able to improve the quality and the efficacy of traditional treatments,related to several human diseases,such as chronic diseases,neurodegenerative pathologies and,interestingly,oral diseases.Of course,dental medicine has notably increased the use of biotechnologies to ensure modern and conservative approaches:in this landscape,the use of CRISPR-Cas9 system may speed and personalize the traditional therapies,ensuring a good predictability of clinical results.The aim of this critical overview is to provide evidence on CRISPR efficacy,taking into specific account its applications in oral medicine.
文摘The advancement of Clustered Regularly Interspaced Short Palindromic Repeats(CRISPR)gene editing technology has revolutionized the comprehension of human genome,propelling molecular and cellular biology research into unexplored realms and accelerating progress in life sciences and medicine.CRISPR-based gene screening,recognized for its efficiency and practicality,is widely utilized across diverse biological fields.Aging is a multifaceted process governed by a myriad of genetic and epigenetic factors.Unraveling the genes regulating aging holds promise for understanding this intricate phenomenon and devising strategies for its assessment and intervention.This review provides a comprehensive overview of the progress in CRISPR screening and its applications in aging research,while also offering insights into future directions.CRISPR-based genetic-manipulation tools are positioned as indispensable instruments for mitigating aging and managing age-related diseases.
基金the European Structural and Investment Funded Grant"Cardio Metabolic"(#KK.01.2.1.02.0321)the Croatian National Centre of Research Excellence in Personalized Healthcare Grant(#KK.01.1.1.01.0010)+2 种基金the European Regional Development Fund Grant,project"CRISPR/Cas9-CasMouse"(#KK.01.1.1.04.0085)the European Structural and Investment Funded Project of Centre of Competence in Molecular Diagnostics(#KK.01.2.2.03.0006)the Croatian National Centre of Research Excellence in Personalized Healthcare Grant(#KK.01.1.1.01.0010).
文摘Hepatocyte nuclear factor 1 alpha(HNF1A),hepatocyte nuclear factor 4 alpha(HNF4A),and forkhead box protein A2(FOXA2)are key transcription factors that regulate a complex gene network in the liver,cre-ating a regulatory transcriptional loop.The Encode and ChIP-Atlas databases identify the recognition sites of these transcription factors in many glycosyltransferase genes.Our in silico analysis of HNF1A,HNF4A.and FOXA2 binding to the ten candidate glyco-genes studied in this work confirms a significant enrich-ment of these transcription factors specifically in the liver.Our previous studies identified HNF1A as a master regulator of fucosylation,glycan branching,and galactosylation of plasma glycoproteins.Here,we aimed to functionally validate the role of the three transcription factors on downstream glyco-gene transcriptional expression and the possible effect on glycan phenotype.We used the state-of-the-art clus-tered regularly interspaced short palindromic repeats/dead Cas9(CRISPR/dCas9)molecular tool for the downregulation of the HNF1A,HNF4A,and FOXA2 genes in HepG2 cells-a human liver cancer cell line.The results show that the downregulation of all three genes individually and in pairs affects the transcrip-tional activity of many glyco-genes,although downregulation of glyco-genes was not always followed by an unambiguous change in the corresponding glycan structures.The effect is better seen as an overall change in the total HepG2 N-glycome,primarily due to the extension of biantennary glycans.We propose an alternative way to evaluate the N-glycome composition via estimating the overall complexity of the glycome by quantifying the number of monomers in each glycan structure.We also propose a model showing feedback loops with the mutual activation of HNF1A-FOXA2 and HNF4A-FOXA2 affecting glyco-genes and protein glycosylation in HepG2 cells.