Results of research of supercritical fluid CO2-impregnation process (the static mode) within a problem of synthesis of the palladium catalyst are given. The kinetics of process is characterized in the pressure range f...Results of research of supercritical fluid CO2-impregnation process (the static mode) within a problem of synthesis of the palladium catalyst are given. The kinetics of process is characterized in the pressure range from 15.0 to 35.0 MPa on temperatures 308.15?K, 313.15?K, 318.15?K, 323.15?K, 328.15?K and 333.15?K. Results of surface assessment and activity measurements of the catalyst samples synthesized by supercritical СO2-impregnation of aluminum oxide suggest competitiveness of the discussed approach in comparison to traditional methods.展开更多
The decontaminating of catalysts nickel on kieselguhr, activated aluminum oxide and palladium catalyst LD-265 agent’s nature was analyzed. The possibility of catalyst’s regeneration was examined using supercritical ...The decontaminating of catalysts nickel on kieselguhr, activated aluminum oxide and palladium catalyst LD-265 agent’s nature was analyzed. The possibility of catalyst’s regeneration was examined using supercritical CO2 extraction. Regeneration of coked catalysts was carried out at 70oC and 150oC in the pressure range 10 - 30 MPa by pure and modified supercritical CO2. Methanol and dimethylsulfoxide were used as modifiers (co-solvents) of supercritical CO2. The kinetics of supercritical CO2 regeneration process was studied. The activity of regenerated catalysts was measured.展开更多
A new method for the preparation of SBA-15-supported palladium catalyst for Heck reaction in supercritical carbon dioxide was presented.The newly formed SBA-15-supported palladium catalyst(Ph-SBA-15-PPh_3-Pd) exhibi...A new method for the preparation of SBA-15-supported palladium catalyst for Heck reaction in supercritical carbon dioxide was presented.The newly formed SBA-15-supported palladium catalyst(Ph-SBA-15-PPh_3-Pd) exhibited high catalytic activity for the Heck reaction of 4-nitrobromobenzene with methyl acrylate.The catalyst can be reused several times without a loss of activity.展开更多
基金supported by financial support from the National Science Foundation of China (21133010, 21473223, 51221264, 21261160487, 21411130120, 21503241, 91545119, 91545110)"Strategic Priority Research Program" of the Chinese Academy of Sciences, Grant no. XDA09030103CAS/SAFEA International Partnership Program for Creative Research Teams
文摘Results of research of supercritical fluid CO2-impregnation process (the static mode) within a problem of synthesis of the palladium catalyst are given. The kinetics of process is characterized in the pressure range from 15.0 to 35.0 MPa on temperatures 308.15?K, 313.15?K, 318.15?K, 323.15?K, 328.15?K and 333.15?K. Results of surface assessment and activity measurements of the catalyst samples synthesized by supercritical СO2-impregnation of aluminum oxide suggest competitiveness of the discussed approach in comparison to traditional methods.
文摘The decontaminating of catalysts nickel on kieselguhr, activated aluminum oxide and palladium catalyst LD-265 agent’s nature was analyzed. The possibility of catalyst’s regeneration was examined using supercritical CO2 extraction. Regeneration of coked catalysts was carried out at 70oC and 150oC in the pressure range 10 - 30 MPa by pure and modified supercritical CO2. Methanol and dimethylsulfoxide were used as modifiers (co-solvents) of supercritical CO2. The kinetics of supercritical CO2 regeneration process was studied. The activity of regenerated catalysts was measured.
基金National Natural Science Foundation of China(No.20603005)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20090041110012) for their financial support
文摘A new method for the preparation of SBA-15-supported palladium catalyst for Heck reaction in supercritical carbon dioxide was presented.The newly formed SBA-15-supported palladium catalyst(Ph-SBA-15-PPh_3-Pd) exhibited high catalytic activity for the Heck reaction of 4-nitrobromobenzene with methyl acrylate.The catalyst can be reused several times without a loss of activity.