The stability of composite palladium membranes is of key importance for their application in hydrogen energy systems. Most of these membranes are prepared by electroless plating, and beforehand the substrate surface i...The stability of composite palladium membranes is of key importance for their application in hydrogen energy systems. Most of these membranes are prepared by electroless plating, and beforehand the substrate surface is activated by a SnCl_2–PdCl_2 process, but this process leads to a residue of Sn, which has been reported to be harmful to the membrane stability. In this work, the Pd/Al_2O_3 membranes were prepared by electroless plating after the SnCl_2–PdCl_2 process. The amount of Sn residue was adjusted by the SnCl_2 concentration, activation times and additional Sn(OH)_2coating. The surface morphology, cross-sectional structure and elemental composition were analyzed by scanning electron microscopy(SEM), metallography and energy dispersive spectroscopy(EDS), respectively. Hydrogen permeation stability of the prepared palladium membranes were tested at450–600 °C for 400 h. It was found that the higher SnCl_2 concentration and activation times enlarged the Sn residue amount and led to a lower initial selectivity but a better membrane stability. Moreover, the additional Sn(OH)_2coating on the Al_2O_3 substrate surface also greatly improved the membrane selectivity and stability.Therefore, it can be concluded that the Sn residue from the SnCl_2–PdCl_2 process cannot be a main factor for the stability of the composite palladium membranes at high temperatures.展开更多
The present work was focused on the preparation of palladium alloy membranes and the effect of properties of ceramic support on the composited membrane morphology. Palladium-base membrane is known to have high selecti...The present work was focused on the preparation of palladium alloy membranes and the effect of properties of ceramic support on the composited membrane morphology. Palladium-base membrane is known to have high selectivity and stability for hydrogen separation. In order to increase hydrogen permeation and separation factor, the membrane must be thinner and defect-free. Palladium membrane supported on a porous alumina prepared by electroless plating is the promising method to provide good hydrogen permeability. The alumina tube substrate was pre-seeded by immersing in the palladium acetate solution and followed by reduction in the alkaline hydrazine solution. After that, the deposition of palladium membrane could be achieved from the plating bath containing ethylenediamine tetraacetic acid (EDTA) stabilized palladium complex and hydrazine. The morphology of palladium film was observed to progress as a function of plating time and a dense layer membrane was available after plating for 3 h. The porosity of ceramic support exhibited an effect on the microstructure of deposited film such that the support with low porosity tended to achieve a defect free palladium membrane.展开更多
基金Supported by the National High Technology Research and Development Program of China(863 Program,2009AA05ZI03)the Natural Science Foundation of Jiangsu Province(BK 20130940,BK 20130916)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The stability of composite palladium membranes is of key importance for their application in hydrogen energy systems. Most of these membranes are prepared by electroless plating, and beforehand the substrate surface is activated by a SnCl_2–PdCl_2 process, but this process leads to a residue of Sn, which has been reported to be harmful to the membrane stability. In this work, the Pd/Al_2O_3 membranes were prepared by electroless plating after the SnCl_2–PdCl_2 process. The amount of Sn residue was adjusted by the SnCl_2 concentration, activation times and additional Sn(OH)_2coating. The surface morphology, cross-sectional structure and elemental composition were analyzed by scanning electron microscopy(SEM), metallography and energy dispersive spectroscopy(EDS), respectively. Hydrogen permeation stability of the prepared palladium membranes were tested at450–600 °C for 400 h. It was found that the higher SnCl_2 concentration and activation times enlarged the Sn residue amount and led to a lower initial selectivity but a better membrane stability. Moreover, the additional Sn(OH)_2coating on the Al_2O_3 substrate surface also greatly improved the membrane selectivity and stability.Therefore, it can be concluded that the Sn residue from the SnCl_2–PdCl_2 process cannot be a main factor for the stability of the composite palladium membranes at high temperatures.
基金supported by the National Metal and Materials Center,Thailand under Grant No.MT-B-51-END-07-057-I
文摘The present work was focused on the preparation of palladium alloy membranes and the effect of properties of ceramic support on the composited membrane morphology. Palladium-base membrane is known to have high selectivity and stability for hydrogen separation. In order to increase hydrogen permeation and separation factor, the membrane must be thinner and defect-free. Palladium membrane supported on a porous alumina prepared by electroless plating is the promising method to provide good hydrogen permeability. The alumina tube substrate was pre-seeded by immersing in the palladium acetate solution and followed by reduction in the alkaline hydrazine solution. After that, the deposition of palladium membrane could be achieved from the plating bath containing ethylenediamine tetraacetic acid (EDTA) stabilized palladium complex and hydrazine. The morphology of palladium film was observed to progress as a function of plating time and a dense layer membrane was available after plating for 3 h. The porosity of ceramic support exhibited an effect on the microstructure of deposited film such that the support with low porosity tended to achieve a defect free palladium membrane.