Carbonylation reactions,crucial for carbonyl group incorporation,struggle with the inherent complexity of achieving selective mono-or double-carbonylation on single substrates,often due to competing reaction pathways....Carbonylation reactions,crucial for carbonyl group incorporation,struggle with the inherent complexity of achieving selective mono-or double-carbonylation on single substrates,often due to competing reaction pathways.Herein,our study introduces a strategy employing palladium amides,harnessing their unique reactivity control,to direct the selective carbonylation of amines for the targeted synthesis of urea and oxamide derivatives.The palladium amide structure was elucidated using single-crystal X-ray diffraction.Controlled experiments and cyclic voltammetry studies further elucidate that the oxidation of palladium amide or its insertion into a carbonyl group diverges into distinct pathways.By employing sodium percarbonate as an eco-friendly oxidant and base,we have successfully constructed a switchable carbonylation system co-catalyzed by palladium and iodide under room temperature.The utilizing strategy in this study not only facilitates effective control over reaction selectivity but also mitigates the risk of explosions,a critical safety concern in traditional carbonylation methods.展开更多
Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticle...Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticles(NPs)on nitrogen-doped carbon;synthesized by using F127 as a stabilizer,as well as chitosan as a carbon and nitrogen source.The Pd/NCF catalyst was efficient and recyclable for oxidative carbonylation of phenol to diphenyl carbonate,exhibiting higher stability than Pd/NC prepared without F127 addition.The hydrogen bond between chitosan(CTS)and F127 was enhanced by F127,which anchored the N in the free amino group,increasing the N content of the carbon material and ensuring that the support could provide sufficient N sites for the deposition of Pd NPs.This process helped to improve metal dispersion.The increased metal-support interaction,which limits the leaching and coarsening of Pd NPs,improves the stability of the Pd/NCF catalyst.Furthermore,density functional theory calculations indicated that pyridine N stabilized the Pd^(2+)species,significantly inhibiting the loss of Pd^(2+)in Pd/NCF during the reaction process.This work provides a promising avenue towards enhancing the stability of nitrogen-doped carbon-supported metal catalysts.展开更多
Palladium-catalyzed carbonylation is an efficient approach to prepare carbonyl-containing compounds with high atomic economy in synthetic organic chemistry.However,in comparison with aryl halides,carbonylation of alky...Palladium-catalyzed carbonylation is an efficient approach to prepare carbonyl-containing compounds with high atomic economy in synthetic organic chemistry.However,in comparison with aryl halides,carbonylation of alkyl halides is relatively challenging due to the decreased stability of the palladium intermediates.Carbonylation of activated alkyl halides is even more difficult,as nucleophilic substitution reactions with nucleophiles occur more easily with them.In this article,we summarize and discuss recent achievements in palladium-catalyzed carbonylative reactions of activated alkyl halides.The transformations proceed through radical intermediates which are generated in various manners.Under a relatively high pressure of carbon monoxide,the corresponding aliphatic carboxylic acid derivates were effectively prepared with various nucleophiles as the reaction partners.Besides alcohols,amines and organoboron reagents,four-component reactions in combination with alkenes or alkynes were also developed.Case-by-case reaction mechanisms are discussed as well and a personal outlook has also been provided.展开更多
El Niño-Southern Oscillation(ENSO)is a major driver of climate change in middle and low latitudes and thus strongly influences the terrestrial carbon cycle through land-air interaction.Both the ENSO modulation an...El Niño-Southern Oscillation(ENSO)is a major driver of climate change in middle and low latitudes and thus strongly influences the terrestrial carbon cycle through land-air interaction.Both the ENSO modulation and carbon flux variability are projected to increase in the future,but their connection still needs further investigation.To investigate the impact of future ENSO modulation on carbon flux variability,this study used 10 CMIP6 earth system models to analyze ENSO modulation and carbon flux variability in middle and low latitudes,and their relationship,under different scenarios simulated by CMIP6 models.The results show a high consistency in the simulations,with both ENSO modulation and carbon flux variability showing an increasing trend in the future.The higher the emissions scenario,especially SSP5-8.5 compared to SSP2-4.5,the greater the increase in variability.Carbon flux variability in the middle and low latitudes under SSP2-4.5 increases by 30.9%compared to historical levels during 1951-2000,while under SSP5-8.5 it increases by 58.2%.Further analysis suggests that ENSO influences mid-and low-latitude carbon flux variability primarily through temperature.This occurrence may potentially be attributed to the increased responsiveness of gross primary productivity towards regional temperature fluctuations,combined with the intensified influence of ENSO on land surface temperatures.展开更多
Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation d...Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation during sodiation-desodiation processes seriously affect its high-rate and long-cyde performance,unbeneficial for the application as fast-charging and long-cycling SIBs anode.Herein,the three-dimensional porous Cu_(1.81)S/nitrogen-doped carbon frameworks(Cu_(1.81)S/NC)are synthesized by the simple and facile sol-gel and annealing processes,which can accommodate the volumetric expansion of Cu_(1.81)S nanoparticles and accelerate the transmission of ions and electrons during Na^(+)insertion/extraction processes,exhibiting the excellent rate capability(250.6 mA·g^(-1)at 20.0 A·g^(-1))and outstanding cycling stability(70% capacity retention for 6000 cycles at 10.0 A·g^(-1))for SIBs.Moreover,the Na-ion full cells coupled with Na_(3)V_(2)(PO_(4))_(3)/C cathode also demonstrate the satisfactory reversible specific capacity of 330.5 mAh·g^(-1)at 5.0 A·g^(-1)and long-cycle performance with the 86.9% capacity retention at 2.0 A·g^(-1)after 750 cycles.This work proposes a promising way for the conversionbased metal sulfides for the applications as fast-charging sodium-ion battery anode.展开更多
S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB...S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.展开更多
Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_...Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_(4)/residual carbon from coal gasification fine slag(CFO/RC)composites were created using a novel hydrothermal method.Various mechanisms for microwave absorption,including conductive loss,natural resonance,interfacial dipole polarization,and magnetic flux loss,are involved in these composites.Consequently,compared with pure residual carbon materials,this composite offers superior capabilities in microwave absorption.At 7.76GHz,the CFO/RC-2 composite achieves an impressive minimum reflection loss(RL_(min))of-43.99 dB with a thickness of 2.44 mm.Moreover,CFO/RC-3 demonstrates an effective absorption bandwidth(EAB)of up to 4.16 GHz,accompanied by a thickness of 1.18mm.This study revealed the remarkable capability of the composite to diminish electromagnetic waves,providing a new generation method for microwave absorbing materials of superior quality.展开更多
The neutral palladium(Ⅱ) complex bis-[1-(5'-diphenylphosphinothiazol-2'-yl)-imidazolyl]dichloropalladium(Ⅱ)(1A) ligated by thiazolylimidazolyl-based phosphine(L1) in which thiazolylimidazolyl acted as an...The neutral palladium(Ⅱ) complex bis-[1-(5'-diphenylphosphinothiazol-2'-yl)-imidazolyl]dichloropalladium(Ⅱ)(1A) ligated by thiazolylimidazolyl-based phosphine(L1) in which thiazolylimidazolyl acted as an S- and N-donor provider with weak coordinating nature,and the ionic complex bis-[1-(5'-diphenylphosphinothiazol-2'-yl)-3-methylimidazolium]dichloropalladium(Ⅱ) trifluoromethanesulfonate(2A) ligated by thiazolylimidazolium-based phosphine(L2) after quaternization of L1 using methyl trifluoromethanesulphonate were synthesized.It was found that the introduced positive charges and strong electron-withdrawing effect in 2A not only led to changes in the configuration and structural stability of the complex,but also lowered its catalytic performance in carbonylative Sonogashira reactions.These effects reveal the important role of the N-donor in 1A.In addition,as an ionic palladium complex,2A combined with the room-temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate could be recycled eight times as the catalyst in carbonylative Sonogashira reactions without detectable metal leaching.展开更多
The potential (E)-dependent vibrational behavior of a saturated CO adlayer on Au-core Pd-shell nanoparticle film electrodes was investigated over a wide potential range, in acidic, neutral, and basic solutions, usin...The potential (E)-dependent vibrational behavior of a saturated CO adlayer on Au-core Pd-shell nanoparticle film electrodes was investigated over a wide potential range, in acidic, neutral, and basic solutions, using in situ surface-enhanced Raman spectroscopy (SERS). Over the whole of the examined potential region (-1.5 to 0.55 V vs. NHE), the peak frequencies of both the C-OM and the Pd-COM band (here, M denotes the multiply-bonded configuration) displayed three distinct linear regions: dvc oM/dE decreased from -185-207 (from -1.5 to -1.2 V) to -83-84 cm-1/V (-1.2 to -0.15 V), and then to 43 cm-1/V (-0.2 to 0.55 V); on the other hand, dvpd coM/dE changed from -10 to -8 cm I/V (from -1.5 to -1.2 V) to ^-31 to -30 cm-1/V (-1.2 to -0.15 V), and then to -15 cm-1/V (-0.2 to 0.55 V). The simultaneously recorded cyclic voltammograms revealed that at E 〈 -1.2 V, a hydro- gen evolution reaction (HER) occurred. With the help of periodic density functional theory calcula- tions using two different (2 × 2)-3CO slab models with Pd(111), the unusually high dvc-oM/dE and the small dVPd-CoM/dE in the HER region were explained as being due to the conversion of COad from bridge to hollow sites, which was induced by the co-adsorbed hydrogen atoms formed from dissociated water at negative potentials.展开更多
Combinations of graphene(Gr)and carbon black(C)were employed as binary carbon supports to fabricate Pd‐based electrocatalysts via one‐pot co‐reduction with Pd2+.The electrocatalytic performance of the resulting Pd...Combinations of graphene(Gr)and carbon black(C)were employed as binary carbon supports to fabricate Pd‐based electrocatalysts via one‐pot co‐reduction with Pd2+.The electrocatalytic performance of the resulting Pd/Gr‐C catalysts during the electrooxidation of formic acid was assessed.A Pd/Gr0.3C0.7(Gr oxide:C=3:7,based on the precursor mass ratio)electrocatalyst exhibited better catalytic performance than both Pd/C and Pd/Gr catalysts.The current density generated by the Pd/Gr0.3C0.7catalyst was as high as102.14mA mgPd?1,a value that is approximately3times that obtained from the Pd/C(34.40mA mgPd?1)and2.6times that of the Pd/Gr material(38.50mA mgPd?1).The anodic peak potential of the Pd/Gr0.3C0.7was120mV more negative than that of the Pd/C and70mV more negative than that of the Pd/Gr.Scanning electron microscopy images indicated that the spherical C particles accumulated on the wrinkled graphene surfaces to form C cluster/Gr hybrids having three‐dimensional nanostructures.X‐ray photoelectron spectroscopy data confirmed the interaction between the Pd metal and the binary Gr‐C support.The Pd/Gr0.3C0.7also exhibited high stability,and so is a promising candidate for the fabrication of anodes for direct formic acid fuel cells.This work demonstrates a simple and cost‐effective method for improving the performance of Pd‐based electrocatalysts,which should have potential industrial applications.展开更多
Catalyst regeneration and the retention of high catalytic activity are still the critical issues in environmental application. A novel fluidized gas-liquid-solid electrochemical reactor was developed to simultaneously...Catalyst regeneration and the retention of high catalytic activity are still the critical issues in environmental application. A novel fluidized gas-liquid-solid electrochemical reactor was developed to simultaneously remove chlorinated pollutants and in situ regenerate the spent catalyst. Activated carbon modified with palladium catalyst (AC-Pd) was prepared for electrochemical dechlorination. For the 4-chlorophenol wastewater of initial concentration 200 mg· L^- 1, the removal efficiency could nearly reach 100% in less than 30 rain. Catalytic activity of AC-Pd catalyst was preserved effectively even in consecutive cycling run without special regeneration. OH radicals, generated by electrochemical reaction, played a critical role in self-regeneration of AC-Pd. High catalytic activity of spent AC-Pd catalyst provided an attractive alternative in wastewater treatment.展开更多
Carbon modified TiO_2 nanobelts(TiO_2-C) were synthesized using a hydrothermal growth method,as a support material for palladium(Pd) nanoparticles(Pd/TiO_2-C) to improve the electrocatalytic performance for methanol e...Carbon modified TiO_2 nanobelts(TiO_2-C) were synthesized using a hydrothermal growth method,as a support material for palladium(Pd) nanoparticles(Pd/TiO_2-C) to improve the electrocatalytic performance for methanol electrooxidation by comparison to Pd nanoparticles on bare TiO_2 nanobelts(Pd/TiO_2)and activated carbon(Pd/AC). Cyclic voltammetry characterization was conducted with respect to saturated calomel electrode(SCE) in an alkaline methanol solution, and the results indicate that the specific activity of Pd/TiO_2-C is 2.2 times that of Pd/AC and 1.5 times that of Pd/TiO_2. Chronoamperometry results revealed that the TiO_2-C support was comparable in stability to activated carbon, but possesses an enhanced current density for methanol oxidation at a potential of -0.2 V vs. SCE. The current study demonstrates the potential of Pd nanoparticle loaded on hierarchical TiO_2-C nanobelts for electrocatalytic applications such as fuel cells and batteries.展开更多
Few layer graphene (FLG), multi-walled carbon nanotubes (CNTs) and a nanotube-graphene composite (CNT-FLG) were used as supports for palladium nanoparticles. The catalysts, which were characterized by transmissi...Few layer graphene (FLG), multi-walled carbon nanotubes (CNTs) and a nanotube-graphene composite (CNT-FLG) were used as supports for palladium nanoparticles. The catalysts, which were characterized by transmission electron microscopy, Raman spectroscopy and X-ray diffraction, were used as anodes in the electrooxidation of ethanol, ethylene glycol and glycerol in half cells and in passive direct ethanol fuel cells. Upon Pd deposition, a stronger interaction was found to occur between the metal and the nanotube-graphene composite and the particle size was significantly smaller in this material (6.3 nm), comparing with nanotubes and graphene alone (8 and 8.4 nm, respectively). Cyclic voltammetry experiments conducted with Pd/CNT, Pd/FLG and Pd/CNT-FLG in 10 wt% ethanol and 2 M KOH solution, showed high specific currents of 1.48, 2.29 and 2.51 mA-/zgp-d, respectively. Moreover, the results obtained for ethylene glycol and glycerol oxidation highlighted the excellent electrocatalytic activity of Pd/CNT-FLG in terms of peak current density (up to 3.70 mAgd for ethylene glycol and 1.84 mAfor glycerol, respectively). Accordingly, Pd/CNT-FLG can be considered as the best performing one among the electrocatalysts ever reported for ethylene glycol oxidation, especially considering the low metal loading used in this work. Direct ethanol fuel cells at room temperature were studied by obtaining power density curves and undertaking galvanostatic experiments. The power density outputs using Pd/CNT, Pd/FLG and Pd/CNT-FLG were 12.1, 16.3 and 18.4 mW.cm-2, respectively. A remarkable activity for ethanol electrooxidation was shown by Pd/CNT-FLG anode catalyst. In a constant current experiment, the direct ethanol fuel cell containing Pd/CNT-FLG could continuously deliver 20 mA.cm-2 for 9.5 h during the conversion of ethanol into acetate of 30%, and the energy released from the cell was about 574 J.展开更多
Pd nanoparticles(Pd-NPs)were prepared and directly anchored on the surface of multi-walled carbon nanotubes(MWCNTs)in the absence of chemical reduction agent,where MWCNTs were used as both the chemical reduction agent...Pd nanoparticles(Pd-NPs)were prepared and directly anchored on the surface of multi-walled carbon nanotubes(MWCNTs)in the absence of chemical reduction agent,where MWCNTs were used as both the chemical reduction agent and the support substrate of Pd-NPs.Effect of various surfactants on the in situ deposition of PdNPs on MWCNTs was investigated.When MWCNTs were modified with a cationic surfactant(hexadecyl trimethyl ammonium bromide,CTAB),the amount of the Pd-NPs(Pd-NP/CTAB-MWCNT)generated by such an in situ deposition method gets a notable increase,and the size of the as-synthesized Pd-NPs becomes smaller,compared with those in the absence of any surfactant(Pd-NP/MWCNT)or in the presence of an anionic surfactant SDS(Pd-NP/SDS-MWCNT)and a neutral surfactant OP(PdNP/OP-MWCNT).Results show that the MWCNTs modified with CTAB are propitious to the in situ reduction of Pd2?.Among the prepared catalysts,Pd-NP/CTABMWCNT displays the highest electroactivity for ethanol oxidation in alkaline media.展开更多
Palladium-catalyzed homo-coupling of arylboronic acids could proceed smoothly with a commercially available resin functionlised by phosphino or amino group as the ligand in supercritical carbon dioxide thereby offerin...Palladium-catalyzed homo-coupling of arylboronic acids could proceed smoothly with a commercially available resin functionlised by phosphino or amino group as the ligand in supercritical carbon dioxide thereby offering a simple and efficient protocol for the synthesis of symmetrical bi-aryl molecules and their higher homologues.展开更多
Catalytic property of Pd/Fe2O3 catalysts on carbon monoxide(CO) oxidation at low temperature were investigated in this paper. Both the as-prepared and H2-pretreated Pd/Fe2O3 catalysts show catalytic performances on CO...Catalytic property of Pd/Fe2O3 catalysts on carbon monoxide(CO) oxidation at low temperature were investigated in this paper. Both the as-prepared and H2-pretreated Pd/Fe2O3 catalysts show catalytic performances on CO oxidation. The CO was completely converted at 333 K for the as-prepared sample,whereas at 313 K for H2-pretreated Pd/Fe2O3-573 catalyst. The catalytic performance of the Pd/Fe2O3 catalyst decreases with increased calcination temperature. This may be due to the increased crystallinity of the support and decreased metal-support interaction. Progressive deactivation of the catalysts during long-time reaction was associated with the formation of carbonates on the catalyst surface that inhibits CO activation or intermediate transformation.展开更多
The catalytic performance of methane partial oxidation was investigated on Pd/CeO2-ZrO2 and Pd/α-Al2O3 catalysts.The catalysts were characterized by XRD,Raman spectra,and TG-DTA techniques.The results show that CeO2-...The catalytic performance of methane partial oxidation was investigated on Pd/CeO2-ZrO2 and Pd/α-Al2O3 catalysts.The catalysts were characterized by XRD,Raman spectra,and TG-DTA techniques.The results show that CeO2-ZrO2 support is more advantageous for the catalytic activity and stability of catalysts compared to α-Al2O3.TG-DTA and Raman spectra results indicated that carbon deposited on the catalysts was in the form of graphite,which is the main reason for the deactivation of catalysts after a 24-hour reaction.Moreover,CeO2-ZrO2 had positive effect on inhibiting carbon deposition.展开更多
Selective hydrogenation of biomass-derived 5-hydroxymethylfurfural(HMF) to 2,5-dihydroxymethyltetrahydrofuran(DHMTHF) with 96% selectivity and a complete HMF conversion is obtained over palladium catalyst supporte...Selective hydrogenation of biomass-derived 5-hydroxymethylfurfural(HMF) to 2,5-dihydroxymethyltetrahydrofuran(DHMTHF) with 96% selectivity and a complete HMF conversion is obtained over palladium catalyst supported on mesoporous graphitic carbon nitride(Pd/mpg-C_3N_4) under pressured hydrogen atmosphere in aqueous media. The excellent catalytic performance of Pd/mpg-C_3N_4 is attributed to hydrogen bonding-related competitive interactions between reactant HMF and “intermediate” 2,5-dihydroxymethylfuran(DHMF) with the support mpg-C_3N_4, which leads to a deep hydrogenation of DHMF to DHMTHF.展开更多
Selective phenol hydrogenation is a green approach to produce cyclohexanone.It still remains a big challenge to prepare efficient supports of the catalysts for the phenol hydrogenation via a simple and cost-effective ...Selective phenol hydrogenation is a green approach to produce cyclohexanone.It still remains a big challenge to prepare efficient supports of the catalysts for the phenol hydrogenation via a simple and cost-effective approach.Herein,a facile approach was developed,i.e.,direct calcination of activated carbon(AC)under argon at high temperature,to improve its structure and surface properties.The modified AC materials were supported with Pd nanoparticles(NPs)to fabricate the Pd/C catalysts.The as-prepared Pd/C600 catalyst exhibits superior catalytic performance in the phenol hydrogenation,and its turnover frequency(TOF)value is 199.2 h^-1,1.31 times to that of Pd/C-raw.The Pd/C600 catalyst presents both better hydrophobicity and more structural defects,contributing to the improved dispersibility in the reaction solution(phenol-cyclohexane),the better Pd dispersion and the smaller Pd size,which result in the enhancement of the catalytic performance.Furthermore,the as-prepared Pd/C600 catalyst shows a good recyclability.展开更多
基金The National Key Research and Development Program of Ministry of Science and Technology(No.2022YFA1504602)Natural Science Foundation of Jiangsu Province(No.BK20211094)National Natural Science Foundation of China(No.22302214,21972152,U22B20137).
文摘Carbonylation reactions,crucial for carbonyl group incorporation,struggle with the inherent complexity of achieving selective mono-or double-carbonylation on single substrates,often due to competing reaction pathways.Herein,our study introduces a strategy employing palladium amides,harnessing their unique reactivity control,to direct the selective carbonylation of amines for the targeted synthesis of urea and oxamide derivatives.The palladium amide structure was elucidated using single-crystal X-ray diffraction.Controlled experiments and cyclic voltammetry studies further elucidate that the oxidation of palladium amide or its insertion into a carbonyl group diverges into distinct pathways.By employing sodium percarbonate as an eco-friendly oxidant and base,we have successfully constructed a switchable carbonylation system co-catalyzed by palladium and iodide under room temperature.The utilizing strategy in this study not only facilitates effective control over reaction selectivity but also mitigates the risk of explosions,a critical safety concern in traditional carbonylation methods.
基金support by the National Natural Science Foundation of China(U21A20306,U20A20152)Natural Science Foundation of Hebei Province(B2022202077).
文摘Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticles(NPs)on nitrogen-doped carbon;synthesized by using F127 as a stabilizer,as well as chitosan as a carbon and nitrogen source.The Pd/NCF catalyst was efficient and recyclable for oxidative carbonylation of phenol to diphenyl carbonate,exhibiting higher stability than Pd/NC prepared without F127 addition.The hydrogen bond between chitosan(CTS)and F127 was enhanced by F127,which anchored the N in the free amino group,increasing the N content of the carbon material and ensuring that the support could provide sufficient N sites for the deposition of Pd NPs.This process helped to improve metal dispersion.The increased metal-support interaction,which limits the leaching and coarsening of Pd NPs,improves the stability of the Pd/NCF catalyst.Furthermore,density functional theory calculations indicated that pyridine N stabilized the Pd^(2+)species,significantly inhibiting the loss of Pd^(2+)in Pd/NCF during the reaction process.This work provides a promising avenue towards enhancing the stability of nitrogen-doped carbon-supported metal catalysts.
基金financial support from DICP and K.C.Wong Education Foundation(GJTD-2020-08).
文摘Palladium-catalyzed carbonylation is an efficient approach to prepare carbonyl-containing compounds with high atomic economy in synthetic organic chemistry.However,in comparison with aryl halides,carbonylation of alkyl halides is relatively challenging due to the decreased stability of the palladium intermediates.Carbonylation of activated alkyl halides is even more difficult,as nucleophilic substitution reactions with nucleophiles occur more easily with them.In this article,we summarize and discuss recent achievements in palladium-catalyzed carbonylative reactions of activated alkyl halides.The transformations proceed through radical intermediates which are generated in various manners.Under a relatively high pressure of carbon monoxide,the corresponding aliphatic carboxylic acid derivates were effectively prepared with various nucleophiles as the reaction partners.Besides alcohols,amines and organoboron reagents,four-component reactions in combination with alkenes or alkynes were also developed.Case-by-case reaction mechanisms are discussed as well and a personal outlook has also been provided.
基金jointly supported by projects of the National Natural Science Foundation of China [grant numbers 42141017 and 41975112]。
文摘El Niño-Southern Oscillation(ENSO)is a major driver of climate change in middle and low latitudes and thus strongly influences the terrestrial carbon cycle through land-air interaction.Both the ENSO modulation and carbon flux variability are projected to increase in the future,but their connection still needs further investigation.To investigate the impact of future ENSO modulation on carbon flux variability,this study used 10 CMIP6 earth system models to analyze ENSO modulation and carbon flux variability in middle and low latitudes,and their relationship,under different scenarios simulated by CMIP6 models.The results show a high consistency in the simulations,with both ENSO modulation and carbon flux variability showing an increasing trend in the future.The higher the emissions scenario,especially SSP5-8.5 compared to SSP2-4.5,the greater the increase in variability.Carbon flux variability in the middle and low latitudes under SSP2-4.5 increases by 30.9%compared to historical levels during 1951-2000,while under SSP5-8.5 it increases by 58.2%.Further analysis suggests that ENSO influences mid-and low-latitude carbon flux variability primarily through temperature.This occurrence may potentially be attributed to the increased responsiveness of gross primary productivity towards regional temperature fluctuations,combined with the intensified influence of ENSO on land surface temperatures.
基金financially supported by the National Natural Science Foundation of China(Nos.U1904173 and 52272219)the Key Research Projects of Henan Provincial Department of Education(No.19A150043)+2 种基金the Natural Science Foundation of Henan Province(Nos.202300410330 and 222300420276)the Nanhu Scholars Program for Young Scholars of Xinyang Normal Universitythe Xinyang Normal University Analysis&Testing Center。
文摘Transition metal sulfides have great potential as anode mterials for sodium-ion batteries(SIBs)due to their high theoretical specific capacities.However,the inferior intrinsic conductivity and large volume variation during sodiation-desodiation processes seriously affect its high-rate and long-cyde performance,unbeneficial for the application as fast-charging and long-cycling SIBs anode.Herein,the three-dimensional porous Cu_(1.81)S/nitrogen-doped carbon frameworks(Cu_(1.81)S/NC)are synthesized by the simple and facile sol-gel and annealing processes,which can accommodate the volumetric expansion of Cu_(1.81)S nanoparticles and accelerate the transmission of ions and electrons during Na^(+)insertion/extraction processes,exhibiting the excellent rate capability(250.6 mA·g^(-1)at 20.0 A·g^(-1))and outstanding cycling stability(70% capacity retention for 6000 cycles at 10.0 A·g^(-1))for SIBs.Moreover,the Na-ion full cells coupled with Na_(3)V_(2)(PO_(4))_(3)/C cathode also demonstrate the satisfactory reversible specific capacity of 330.5 mAh·g^(-1)at 5.0 A·g^(-1)and long-cycle performance with the 86.9% capacity retention at 2.0 A·g^(-1)after 750 cycles.This work proposes a promising way for the conversionbased metal sulfides for the applications as fast-charging sodium-ion battery anode.
基金financially supported by the National Natural Science Foundation of China(Nos.51602018 and 51902018)the Natural Science Foundation of Beijing Municipality(No.2154052)+3 种基金the China Postdoctoral Science Foundation(No.2014M560044)the Fundamental Research Funds for the Central Universities(No.FRF-MP-20-22)USTB Research Center for International People-to-people Exchange in Science,Technology and Civilization(No.2022KFYB007)Education and Teaching Reform Foundation at University of Science and Technology Beijing(Nos.2023JGC027,KC2022QYW06,and KC2022TS09)。
文摘S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.
基金financially supported by the Key Project of Natural Science Research in Colleges and Universities of Anhui Province,China(No.2022AH050816)the Open Research Grant of Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining(Nos.EC2023013 and EC2022018)+1 种基金the National Natural Science Foundation of China(No.52200139)the Introduction of Talent in Anhui University of Science and Technology,China(Nos.2021yjrc18 and 2023yjrc79)。
文摘Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_(4)/residual carbon from coal gasification fine slag(CFO/RC)composites were created using a novel hydrothermal method.Various mechanisms for microwave absorption,including conductive loss,natural resonance,interfacial dipole polarization,and magnetic flux loss,are involved in these composites.Consequently,compared with pure residual carbon materials,this composite offers superior capabilities in microwave absorption.At 7.76GHz,the CFO/RC-2 composite achieves an impressive minimum reflection loss(RL_(min))of-43.99 dB with a thickness of 2.44 mm.Moreover,CFO/RC-3 demonstrates an effective absorption bandwidth(EAB)of up to 4.16 GHz,accompanied by a thickness of 1.18mm.This study revealed the remarkable capability of the composite to diminish electromagnetic waves,providing a new generation method for microwave absorbing materials of superior quality.
基金supported by the National Natural Science Foundation of China(21473058,21273077)~~
文摘The neutral palladium(Ⅱ) complex bis-[1-(5'-diphenylphosphinothiazol-2'-yl)-imidazolyl]dichloropalladium(Ⅱ)(1A) ligated by thiazolylimidazolyl-based phosphine(L1) in which thiazolylimidazolyl acted as an S- and N-donor provider with weak coordinating nature,and the ionic complex bis-[1-(5'-diphenylphosphinothiazol-2'-yl)-3-methylimidazolium]dichloropalladium(Ⅱ) trifluoromethanesulfonate(2A) ligated by thiazolylimidazolium-based phosphine(L2) after quaternization of L1 using methyl trifluoromethanesulphonate were synthesized.It was found that the introduced positive charges and strong electron-withdrawing effect in 2A not only led to changes in the configuration and structural stability of the complex,but also lowered its catalytic performance in carbonylative Sonogashira reactions.These effects reveal the important role of the N-donor in 1A.In addition,as an ionic palladium complex,2A combined with the room-temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate could be recycled eight times as the catalyst in carbonylative Sonogashira reactions without detectable metal leaching.
基金supported by the National Natural Science Foundation of China(21473175)the National Instrumentation Program(2011YQ03012416)the National Basic Reserarch Program of China(973 Program,2015CB932301)
文摘The potential (E)-dependent vibrational behavior of a saturated CO adlayer on Au-core Pd-shell nanoparticle film electrodes was investigated over a wide potential range, in acidic, neutral, and basic solutions, using in situ surface-enhanced Raman spectroscopy (SERS). Over the whole of the examined potential region (-1.5 to 0.55 V vs. NHE), the peak frequencies of both the C-OM and the Pd-COM band (here, M denotes the multiply-bonded configuration) displayed three distinct linear regions: dvc oM/dE decreased from -185-207 (from -1.5 to -1.2 V) to -83-84 cm-1/V (-1.2 to -0.15 V), and then to 43 cm-1/V (-0.2 to 0.55 V); on the other hand, dvpd coM/dE changed from -10 to -8 cm I/V (from -1.5 to -1.2 V) to ^-31 to -30 cm-1/V (-1.2 to -0.15 V), and then to -15 cm-1/V (-0.2 to 0.55 V). The simultaneously recorded cyclic voltammograms revealed that at E 〈 -1.2 V, a hydro- gen evolution reaction (HER) occurred. With the help of periodic density functional theory calcula- tions using two different (2 × 2)-3CO slab models with Pd(111), the unusually high dvc-oM/dE and the small dVPd-CoM/dE in the HER region were explained as being due to the conversion of COad from bridge to hollow sites, which was induced by the co-adsorbed hydrogen atoms formed from dissociated water at negative potentials.
基金supported by the Natural Science Foundation of Shandong Province(ZR2016BM31)the Science and Technology Foundation of Jinan City(201311035)~~
文摘Combinations of graphene(Gr)and carbon black(C)were employed as binary carbon supports to fabricate Pd‐based electrocatalysts via one‐pot co‐reduction with Pd2+.The electrocatalytic performance of the resulting Pd/Gr‐C catalysts during the electrooxidation of formic acid was assessed.A Pd/Gr0.3C0.7(Gr oxide:C=3:7,based on the precursor mass ratio)electrocatalyst exhibited better catalytic performance than both Pd/C and Pd/Gr catalysts.The current density generated by the Pd/Gr0.3C0.7catalyst was as high as102.14mA mgPd?1,a value that is approximately3times that obtained from the Pd/C(34.40mA mgPd?1)and2.6times that of the Pd/Gr material(38.50mA mgPd?1).The anodic peak potential of the Pd/Gr0.3C0.7was120mV more negative than that of the Pd/C and70mV more negative than that of the Pd/Gr.Scanning electron microscopy images indicated that the spherical C particles accumulated on the wrinkled graphene surfaces to form C cluster/Gr hybrids having three‐dimensional nanostructures.X‐ray photoelectron spectroscopy data confirmed the interaction between the Pd metal and the binary Gr‐C support.The Pd/Gr0.3C0.7also exhibited high stability,and so is a promising candidate for the fabrication of anodes for direct formic acid fuel cells.This work demonstrates a simple and cost‐effective method for improving the performance of Pd‐based electrocatalysts,which should have potential industrial applications.
基金supported by financial support from the National Science Foundation of China (21133010, 21473223, 51221264, 21261160487, 21411130120, 21503241, 91545119, 91545110)"Strategic Priority Research Program" of the Chinese Academy of Sciences, Grant no. XDA09030103CAS/SAFEA International Partnership Program for Creative Research Teams
基金financially supported by the National Natural Science Foundation of Zhejiang Province,China(No.Z505060)China Postdoctoral Science Foundation(No.2005038290).
文摘Catalyst regeneration and the retention of high catalytic activity are still the critical issues in environmental application. A novel fluidized gas-liquid-solid electrochemical reactor was developed to simultaneously remove chlorinated pollutants and in situ regenerate the spent catalyst. Activated carbon modified with palladium catalyst (AC-Pd) was prepared for electrochemical dechlorination. For the 4-chlorophenol wastewater of initial concentration 200 mg· L^- 1, the removal efficiency could nearly reach 100% in less than 30 rain. Catalytic activity of AC-Pd catalyst was preserved effectively even in consecutive cycling run without special regeneration. OH radicals, generated by electrochemical reaction, played a critical role in self-regeneration of AC-Pd. High catalytic activity of spent AC-Pd catalyst provided an attractive alternative in wastewater treatment.
基金supported by FedDev Ontario through the Applied Research and Commercialization (ARC) Initiative and the Natural Sciences and Engineering Research Council of Canada (NSERC) programMicrobonds, Inc. for additional financial support
文摘Carbon modified TiO_2 nanobelts(TiO_2-C) were synthesized using a hydrothermal growth method,as a support material for palladium(Pd) nanoparticles(Pd/TiO_2-C) to improve the electrocatalytic performance for methanol electrooxidation by comparison to Pd nanoparticles on bare TiO_2 nanobelts(Pd/TiO_2)and activated carbon(Pd/AC). Cyclic voltammetry characterization was conducted with respect to saturated calomel electrode(SCE) in an alkaline methanol solution, and the results indicate that the specific activity of Pd/TiO_2-C is 2.2 times that of Pd/AC and 1.5 times that of Pd/TiO_2. Chronoamperometry results revealed that the TiO_2-C support was comparable in stability to activated carbon, but possesses an enhanced current density for methanol oxidation at a potential of -0.2 V vs. SCE. The current study demonstrates the potential of Pd nanoparticle loaded on hierarchical TiO_2-C nanobelts for electrocatalytic applications such as fuel cells and batteries.
基金supported by the MATTM (Italy) for the PIRODE Project No 94the MSE for the PRIT Project Industria 2015the MIUR (Italy) for the FIRB 2010 Project RBFR10J4H7 002 and HYDROLAB2
文摘Few layer graphene (FLG), multi-walled carbon nanotubes (CNTs) and a nanotube-graphene composite (CNT-FLG) were used as supports for palladium nanoparticles. The catalysts, which were characterized by transmission electron microscopy, Raman spectroscopy and X-ray diffraction, were used as anodes in the electrooxidation of ethanol, ethylene glycol and glycerol in half cells and in passive direct ethanol fuel cells. Upon Pd deposition, a stronger interaction was found to occur between the metal and the nanotube-graphene composite and the particle size was significantly smaller in this material (6.3 nm), comparing with nanotubes and graphene alone (8 and 8.4 nm, respectively). Cyclic voltammetry experiments conducted with Pd/CNT, Pd/FLG and Pd/CNT-FLG in 10 wt% ethanol and 2 M KOH solution, showed high specific currents of 1.48, 2.29 and 2.51 mA-/zgp-d, respectively. Moreover, the results obtained for ethylene glycol and glycerol oxidation highlighted the excellent electrocatalytic activity of Pd/CNT-FLG in terms of peak current density (up to 3.70 mAgd for ethylene glycol and 1.84 mAfor glycerol, respectively). Accordingly, Pd/CNT-FLG can be considered as the best performing one among the electrocatalysts ever reported for ethylene glycol oxidation, especially considering the low metal loading used in this work. Direct ethanol fuel cells at room temperature were studied by obtaining power density curves and undertaking galvanostatic experiments. The power density outputs using Pd/CNT, Pd/FLG and Pd/CNT-FLG were 12.1, 16.3 and 18.4 mW.cm-2, respectively. A remarkable activity for ethanol electrooxidation was shown by Pd/CNT-FLG anode catalyst. In a constant current experiment, the direct ethanol fuel cell containing Pd/CNT-FLG could continuously deliver 20 mA.cm-2 for 9.5 h during the conversion of ethanol into acetate of 30%, and the energy released from the cell was about 574 J.
基金supported by the National Natural Science Foundation of China (Nos. 21376070 and 20876038)Scientific Research Fund of Hunan Provincial Edu- cation Department (No. 11K023)Hunan Provincial Natural Science Foundation of China (14JJ2096)
文摘Pd nanoparticles(Pd-NPs)were prepared and directly anchored on the surface of multi-walled carbon nanotubes(MWCNTs)in the absence of chemical reduction agent,where MWCNTs were used as both the chemical reduction agent and the support substrate of Pd-NPs.Effect of various surfactants on the in situ deposition of PdNPs on MWCNTs was investigated.When MWCNTs were modified with a cationic surfactant(hexadecyl trimethyl ammonium bromide,CTAB),the amount of the Pd-NPs(Pd-NP/CTAB-MWCNT)generated by such an in situ deposition method gets a notable increase,and the size of the as-synthesized Pd-NPs becomes smaller,compared with those in the absence of any surfactant(Pd-NP/MWCNT)or in the presence of an anionic surfactant SDS(Pd-NP/SDS-MWCNT)and a neutral surfactant OP(PdNP/OP-MWCNT).Results show that the MWCNTs modified with CTAB are propitious to the in situ reduction of Pd2?.Among the prepared catalysts,Pd-NP/CTABMWCNT displays the highest electroactivity for ethanol oxidation in alkaline media.
文摘Palladium-catalyzed homo-coupling of arylboronic acids could proceed smoothly with a commercially available resin functionlised by phosphino or amino group as the ligand in supercritical carbon dioxide thereby offering a simple and efficient protocol for the synthesis of symmetrical bi-aryl molecules and their higher homologues.
基金financially supported by National Key Research Program of China (Grant number 2013CB933200)
文摘Catalytic property of Pd/Fe2O3 catalysts on carbon monoxide(CO) oxidation at low temperature were investigated in this paper. Both the as-prepared and H2-pretreated Pd/Fe2O3 catalysts show catalytic performances on CO oxidation. The CO was completely converted at 333 K for the as-prepared sample,whereas at 313 K for H2-pretreated Pd/Fe2O3-573 catalyst. The catalytic performance of the Pd/Fe2O3 catalyst decreases with increased calcination temperature. This may be due to the increased crystallinity of the support and decreased metal-support interaction. Progressive deactivation of the catalysts during long-time reaction was associated with the formation of carbonates on the catalyst surface that inhibits CO activation or intermediate transformation.
基金Project supported by the National‘973’Project(2004CB719503)Petro China(W050509-01-05)
文摘The catalytic performance of methane partial oxidation was investigated on Pd/CeO2-ZrO2 and Pd/α-Al2O3 catalysts.The catalysts were characterized by XRD,Raman spectra,and TG-DTA techniques.The results show that CeO2-ZrO2 support is more advantageous for the catalytic activity and stability of catalysts compared to α-Al2O3.TG-DTA and Raman spectra results indicated that carbon deposited on the catalysts was in the form of graphite,which is the main reason for the deactivation of catalysts after a 24-hour reaction.Moreover,CeO2-ZrO2 had positive effect on inhibiting carbon deposition.
基金supported by the National Natural Science Foundation of China(21472189)Natural Science Foundation of Guangdong Province,China(2015A030312007)+1 种基金Science and Technology Planning Project of Guangzhou City,China(201707010238)Jinan Double Hundred Talents Plan
文摘Selective hydrogenation of biomass-derived 5-hydroxymethylfurfural(HMF) to 2,5-dihydroxymethyltetrahydrofuran(DHMTHF) with 96% selectivity and a complete HMF conversion is obtained over palladium catalyst supported on mesoporous graphitic carbon nitride(Pd/mpg-C_3N_4) under pressured hydrogen atmosphere in aqueous media. The excellent catalytic performance of Pd/mpg-C_3N_4 is attributed to hydrogen bonding-related competitive interactions between reactant HMF and “intermediate” 2,5-dihydroxymethylfuran(DHMF) with the support mpg-C_3N_4, which leads to a deep hydrogenation of DHMF to DHMTHF.
基金financial supports from the National Key R&D Program(2016YFB0301503)the National Natural Science Foundation of China(21776127,21921006)+2 种基金the Jiangsu Province Key R&D Program(BE2018009-2)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the State Key Laboratory of Materials-Oriented Chemical Engineering(ZK201902)。
文摘Selective phenol hydrogenation is a green approach to produce cyclohexanone.It still remains a big challenge to prepare efficient supports of the catalysts for the phenol hydrogenation via a simple and cost-effective approach.Herein,a facile approach was developed,i.e.,direct calcination of activated carbon(AC)under argon at high temperature,to improve its structure and surface properties.The modified AC materials were supported with Pd nanoparticles(NPs)to fabricate the Pd/C catalysts.The as-prepared Pd/C600 catalyst exhibits superior catalytic performance in the phenol hydrogenation,and its turnover frequency(TOF)value is 199.2 h^-1,1.31 times to that of Pd/C-raw.The Pd/C600 catalyst presents both better hydrophobicity and more structural defects,contributing to the improved dispersibility in the reaction solution(phenol-cyclohexane),the better Pd dispersion and the smaller Pd size,which result in the enhancement of the catalytic performance.Furthermore,the as-prepared Pd/C600 catalyst shows a good recyclability.