Objective: To determine the prevalence of colonization and transmission of carbapenem-resistant Gram-negative organisms in order to develop of an effective infection prevention program. Design: Cross-sectional study w...Objective: To determine the prevalence of colonization and transmission of carbapenem-resistant Gram-negative organisms in order to develop of an effective infection prevention program. Design: Cross-sectional study with carbapenem-resistant organisms (CRO) colonization detection from the fecal specimens of 20 Health Care Workers (HCWs) and 67 residents and 175 random environment specimens from September 2022 to September 2023. Setting: A Care and Protection Centre of Orphaned Children in South of HCM City. Participants: It included 20 HCWs, 67 residents, and 175 randomly collected environmental specimens. Method: Rectal and environmental swabs were collected from 20 HCWs, 67 residents (most of them were children), and 175 environmental specimens. MELAB Chromogenic CARBA agar plates, Card NID, and NMIC-500 CPO of the BD Phoenix TM Automated Microbiology System and whole genome sequencing (WGS) were the tests to screen, confirm CROs, respectively and determine CRO colonization and transmission between HCWs, residents, and the environment. Result: We detected 36 CRO isolates, including 6, 11 and 19 CROs found in 6 HCWs, 10 residents and 19 environments. The prevalence of detectable CRO was 30% (6/20) in HCWs, 14.92% (10/67) in residents, and 10.86% (19/175) in environmental swabs in our study. WGS demonstrated CRO colonization and transmission with the clonal spread of E. coli and A. nosocomialis, among HCWs and residents (children). Conclusion: Significant CRO colonization and transmission was evident in HCWs, residents, and the center environment. Cleaning and disinfection of the environment and performing regular hand hygiene are priorities to reduce the risk of CRO colonization and transmission.展开更多
[Objectives]To study the phosphorus removal performance of phosphate accumulating organisms(PAOs).[Methods]Activated sludge from domestic sewage treatment plant was used as the strain source,and phosphate accumulating...[Objectives]To study the phosphorus removal performance of phosphate accumulating organisms(PAOs).[Methods]Activated sludge from domestic sewage treatment plant was used as the strain source,and phosphate accumulating organisms were screened by plate streaking method and dilution coating plate method.Six kinds of excellent phosphate accumulating organisms were obtained by metachromatic granule staining experiment,total phosphorus experiment and simulated sewage phosphorus removal experiment to assist the observation of bac-terial morphology and experiment of phosphorus removal capacity.In addition,the influencing factors of phosphorus removal capacity(nitrogen source,trace metal ions)were analyzed.[Results]In the case of simulated sewage,the phosphorus removal rate of strain b was the highest,reaching 66.25%,while the phosphorus removal rate of strain e and f was about 10%lower than that of the phosphorus uptake experiment.[Conclusions]This study is expected to provide a theoretical reference for the gradual optimization of the screening method of phosphorus re-moval bacteria in domestic sewage treatment.展开更多
BACKGROUND Transplant recipients commonly harbor multidrug-resistant organisms(MDROs),as a result of frequent hospital admissions and increased exposure to antimi-crobials and invasive procedures.AIM To investigate th...BACKGROUND Transplant recipients commonly harbor multidrug-resistant organisms(MDROs),as a result of frequent hospital admissions and increased exposure to antimi-crobials and invasive procedures.AIM To investigate the impact of patient demographic and clinical characteristics on MDRO acquisition,as well as the impact of MDRO acquisition on intensive care unit(ICU)and hospital length of stay,and on ICU mortality and 1-year mortality post heart transplantation.METHODS This retrospective cohort study analyzed 98 consecutive heart transplant patients over a ten-year period(2013-2022)in a single transplantation center.Data was collected regarding MDROs commonly encountered in critical care.RESULTS Among the 98 transplanted patients(70%male),about a third(32%)acquired or already harbored MDROs upon transplantation(MDRO group),while two thirds did not(MDRO-free group).The prevalent MDROs were Acinetobacter baumannii(14%),Pseudomonas aeruginosa(12%)and Klebsiella pneumoniae(11%).Compared to MDRO-free patients,the MDRO group was characterized by higher body mass index(P=0.002),higher rates of renal failure(P=0.017),primary graft dysfunction(10%vs 4.5%,P=0.001),surgical re-exploration(34%vs 14%,P=0.017),mechanical circulatory support(47%vs 26%P=0.037)and renal replacement therapy(28%vs 9%,P=0.014),as well as longer extracorporeal circulation time(median 210 vs 161 min,P=0.003).The median length of stay was longer in the MDRO group,namely ICU stay was 16 vs 9 d in the MDRO-free group(P=0.001),and hospital stay was 38 vs 28 d(P=0.006),while 1-year mortality was higher(28%vs 7.6%,log-rank-χ2:7.34).CONCLUSION Following heart transplantation,a predominance of Gram-negative MDROs was noted.MDRO acquisition was associated with higher complication rates,prolonged ICU and total hospital stay,and higher post-transplantation mortality.展开更多
Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes...Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.展开更多
Although national transplant organizations share common visions and goals,the creation of a unified global organization remains impractical.Differences in ethnicity,culture,religion,and education shape local practices...Although national transplant organizations share common visions and goals,the creation of a unified global organization remains impractical.Differences in ethnicity,culture,religion,and education shape local practices and infrastructure,making the establishment of a single global entity unfeasible.Even with these social disparities aside,logistical factors such as time and distance between organ procurement and transplantation sites pose significant challenges.While technological advancements have extended organ preservation times,they have yet to support the demands of transcontinental transplantations effectively.This review presents a comparative analysis of the structures,operational frameworks,policies,and legislation governing various transplant organizations around the world.Key differences pertain to the administration of these organizations,trends in organ donation,and organ allocation policies,which reflect the financial,cultural,and religious diversity across different regions.While a global transplant organization may be out of reach,agreeing on best practices for the benefit of patients is essential.展开更多
Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(P...Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(PSC)technology.However,two-dimensional(2D)or quasi-2D RP PSCs are encountered with some challenges of the large exciton binding energy,blocked charge transport and poor film quality,which restrict their photovoltaic performance.Fortunately,these issues can be readily resolved by rationally designing spacer cations of RPPs.This review mainly focuses on how to design the molecular structures of organic spacers and aims to endow RPPs with outstanding photovoltaic applications.We firstly elucidated the important roles of organic spacers in impacting crystallization kinetics,charge transporting ability and stability of RPPs.Then we brought three aspects to attention for designing organic spacers.Finally,we presented the specific molecular structure design strategies for organic spacers of RPPs aiming to improve photovoltaic performance of RP PSCs.These proposed strategies in this review will provide new avenues to develop novel organic spacers for RPPs and advance the development of RPP photovoltaic technology for future applications.展开更多
Porous organic cages(POCs)with permanent porosity and excellent host–guest property hold great potentials in regulating ion transport behavior,yet their feasibility as solid-state electrolytes has never been testifie...Porous organic cages(POCs)with permanent porosity and excellent host–guest property hold great potentials in regulating ion transport behavior,yet their feasibility as solid-state electrolytes has never been testified in a practical battery.Herein,we design and fabricate a quasi-solid-state electrolyte(QSSE)based on a POC to enable the stable operation of Li-metal batteries(LMBs).Benefiting from the ordered channels and cavity-induced anion-trapping effect of POC,the resulting POC-based QSSE exhibits a high Li+transference number of 0.67 and a high ionic conductivity of 1.25×10^(−4) S cm^(−1) with a low activation energy of 0.17 eV.These allow for homogeneous Li deposition and highly reversible Li plating/stripping for over 2000 h.As a proof of concept,the LMB assembled with POC-based QSSE demonstrates extremely stable cycling performance with 85%capacity retention after 1000 cycles.Therefore,our work demonstrates the practical applicability of POC as SSEs for LMBs and could be extended to other energy-storage systems,such as Na and K batteries.展开更多
Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network act...Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs.展开更多
BACKGROUND Machine learning(ML),a major branch of artificial intelligence,has not only demonstrated the potential to significantly improve numerous sectors of healthcare but has also made significant contributions to ...BACKGROUND Machine learning(ML),a major branch of artificial intelligence,has not only demonstrated the potential to significantly improve numerous sectors of healthcare but has also made significant contributions to the field of solid organ transplantation.ML provides revolutionary opportunities in areas such as donorrecipient matching,post-transplant monitoring,and patient care by automatically analyzing large amounts of data,identifying patterns,and forecasting outcomes.AIM To conduct a comprehensive bibliometric analysis of publications on the use of ML in transplantation to understand current research trends and their implications.METHODS On July 18,a thorough search strategy was used with the Web of Science database.ML and transplantation-related keywords were utilized.With the aid of the VOS viewer application,the identified articles were subjected to bibliometric variable analysis in order to determine publication counts,citation counts,contributing countries,and institutions,among other factors.RESULTS Of the 529 articles that were first identified,427 were deemed relevant for bibliometric analysis.A surge in publications was observed over the last four years,especially after 2018,signifying growing interest in this area.With 209 publications,the United States emerged as the top contributor.Notably,the"Journal of Heart and Lung Transplantation"and the"American Journal of Transplantation"emerged as the leading journals,publishing the highest number of relevant articles.Frequent keyword searches revealed that patient survival,mortality,outcomes,allocation,and risk assessment were significant themes of focus.CONCLUSION The growing body of pertinent publications highlights ML's growing presence in the field of solid organ transplantation.This bibliometric analysis highlights the growing importance of ML in transplant research and highlights its exciting potential to change medical practices and enhance patient outcomes.Encouraging collaboration between significant contributors can potentially fast-track advancements in this interdisciplinary domain.展开更多
BACKGROUND In the absence of effective antimicrobials,transplant surgery is not viable,and antirejection immunosuppressants cannot be administered,as resistant infections compromise the life-saving goal of organ trans...BACKGROUND In the absence of effective antimicrobials,transplant surgery is not viable,and antirejection immunosuppressants cannot be administered,as resistant infections compromise the life-saving goal of organ transplantation.AIM To evaluate the efficacy of antimicrobials in preventing resistance in solid organ transplant recipients.METHODS A systematic review was conducted using a search methodology consistent with the preferred reporting items for systematic reviews and meta-analyses.This review included randomized clinical trials that evaluated the efficacy of antimicrobial agents(prophylactic or therapeutic)aimed at preventing antimicrobial resistance.The search strategy involved analyzing multiple databases,including PubMed/MEDLINE,Web of Science,Embase,Scopus,and SciELO,as well as examining gray literature sources on Google Scholar.A comprehensive electronic database search was conducted from the databases’inception until May 2024,with no language restrictions.RESULTS After the final phase of the eligibility assessment,this systematic review ultimate-ly included 7 articles.A total of 2318 patients were studied.The most studied microorganisms were cytomegalovirus,although vancomycinresistant enterococci,Clostridioides difficile,and multidrug-resistant Enterobacterales were also analyzed.The antimicrobials used in the interventions were mainly maribavir,valganciclovir,gancic-lovir,and colistin-neomycin.Of concern,all clinical trials showed significant proportions of resistant microorga-nisms after the interventions,with no statistically significant differences between the groups(mean resistance 13.47%vs 14.39%),except for two studies that demonstrated greater efficacy of maribavir and valganciclovir(mean resistance 22.2%vs 41.1%in the control group;P<0.05).The total reported deaths in three clinical trials were 75,and there were 24 graft rejections in two studies.CONCLUSION All clinical trials reported significant proportions of antimicrobial-resistant microorganisms following interventions.More high-quality randomized clinical trials are needed to corroborate these results.展开更多
Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic ...Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic fertilizer is not well understood.In a 3-year field experiment, we aimed to investigate the factors which drive the stability of soil aggregates in greenhouse soil.To explore the impact of organic fertilizer on soil aggregates, we established four treatments:no fertilization (CK);inorganic fertilizer (CF);organic fertilizer (OF);and combined application of inorganic and organic fertilizers(COF).The application of organic fertilizer significantly enhanced the stability of aggregates, that is it enhanced the mean weight diameter, geometric mean diameter and aggregate content (%) of>0.25 mm aggregate fractions.OF and COF treatments increased the concentration of SOC, especially the aliphatic-C, aromatic-C and polysaccharide-C components of SOC, particularly in>0.25 mm aggregates.Organic fertilizer application significantly increased the content of free Fe(Fed), reactive Fe (Feo), and non-crystalline Fe in both bulk soil and aggregates.Furthermore, non-crystalline Fe showed a positive correlation with SOC content in both bulk soil and aggregates.Both non-crystalline Fe and SOC were significantly positively correlated with>2 mm mean weight diameter.Overall, we believe that the increase of SOC, aromatic-C, and non-crystal ine Fe concentrations in soil after the application of organic fertilizer is the reason for improving soil aggregate stability.展开更多
Solid organ tumors present a significant healthcare challenge,both economically and logistically,due to their high incidence and treatment complexity.In 2023,out of the 1.9 million new cancer cases in the United State...Solid organ tumors present a significant healthcare challenge,both economically and logistically,due to their high incidence and treatment complexity.In 2023,out of the 1.9 million new cancer cases in the United States,over 73%were solid organ tumors.Ablative therapies offer minimally invasive solutions for malignant tissue destruction in situ,often with reduced cost and morbidity compared to surgical resection.This review examines the current Food and Drug Administration-approved locoregional ablative therapies(radiofrequency,microwave,cryogenic,high-intensity focused ultrasound,histotripsy)and their evolving role in cancer care.Data were collected through a comprehensive survey of the PubMed-inde-xed literature on tumor ablation techniques,their clinical indications,and outco-mes.Over time,emerging clinical data will help establish these therapies as the standard of care in solid organ tumor treatment,supported by improved long-term outcomes and progression-free survival.展开更多
Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzhei...Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzheimer’s disease,in particular the association between changes in peripheral organ metabolism,changes in gut microbial composition,and Alzheimer’s disease development.To do this,we analyzed peripheral organ metabolism and the gut microbiota in amyloid precursor protein-presenilin 1(APP/PS1)transgenic and control mice at 3,6,9,and 12 months of age.Twelve-month-old APP/PS1 mice exhibited cognitive impairment,Alzheimer’s disease-related brain changes,distinctive metabolic disturbances in peripheral organs and fecal samples(as detected by untargeted metabolomics sequencing),and substantial changes in gut microbial composition compared with younger APP/PS1 mice.Notably,a strong correlation emerged between the gut microbiota and kidney metabolism in APP/PS1 mice.These findings suggest that alterations in peripheral organ metabolism and the gut microbiota are closely related to Alzheimer’s disease development,indicating potential new directions for therapeutic strategies.展开更多
Organic electrochemical transistors have emerged as a solution for artificial synapses that mimic the neural functions of the brain structure,holding great potentials to break the bottleneck of von Neumann architectur...Organic electrochemical transistors have emerged as a solution for artificial synapses that mimic the neural functions of the brain structure,holding great potentials to break the bottleneck of von Neumann architectures.However,current artificial synapses rely primarily on electrical signals,and little attention has been paid to the vital role of neurotransmitter-mediated artificial synapses.Dopamine is a key neurotransmitter associated with emotion regulation and cognitive processes that needs to be monitored in real time to advance the development of disease diagnostics and neuroscience.To provide insights into the development of artificial synapses with neurotransmitter involvement,this review proposes three steps towards future biomimic and bioinspired neuromorphic systems.We first summarize OECT-based dopamine detection devices,and then review advances in neurotransmitter-mediated artificial synapses and resultant advanced neuromorphic systems.Finally,by exploring the challenges and opportunities related to such neuromorphic systems,we provide a perspective on the future development of biomimetic and bioinspired neuromorphic systems.展开更多
Organic material combined with inorganic fertilizer has been shown to greatly improve crop yield and maintain soil fertility globally. However, it remains unclear if crop yield and soil fertility can be sustained in t...Organic material combined with inorganic fertilizer has been shown to greatly improve crop yield and maintain soil fertility globally. However, it remains unclear if crop yield and soil fertility can be sustained in the long term under the combined application of organic and inorganic fertilizers. Three long-term field trials were conducted to investigate the effects of organic amendments on the grain sustainable yield index(SYI), soil fertility index(SFI)and nutrient balance in maize–wheat cropping systems of central and southern China during 1991–2019. Five treatments were included in the trials: 1) no fertilization(control);2) balanced mineral fertilization(NPK);3) NPK plus manure(NPKM);4) high dose of NPK plus manure(1.5NPKM);and 5) NPK plus crop straw(NPKS). Over time, the grain yields of wheat and maize showed an increasing trend in all four fertilization treatments at the Yangling(YL) and Zhengzhou(ZZ) locations, while they declined at Qiyang(QY). The grain yield in the NPKM and 1.5NPKM treatments gradually exceeded that of the NPK and NPKS treatments at the QY site. The largest SYI was recorded in the NPKM treatment across the three sites, suggesting that inorganic fertilizer combined with manure can effectively improve crop yield sustainability. Higher SYI values were recorded at the YL and ZZ sites than at the QY site, possibly because the soil was more acid at QY. The key factors affecting grain yield were soil available phosphorus(AP) and available potassium(AK) at the YL and ZZ sites, and pH and AP at the QY site.All fertilization treatments resulted in soil N and P surpluses at the three sites, but soil K surpluses were recorded only at the QY site. The SFI was greater in the 1.5NPKM, NPKM and NPKS treatments than in the NPK treatment by 13.3–40.0 and 16.4–63.6% at the YL and ZZ sites, respectively, and was significantly higher in the NPKM and 1.5NPKM treatments than in the NPK and NPKS treatments at the QY site. A significant, positive linear relationship was found between SFI and crop yield, and SYI and nutrient balance, indicating that grain yield and its sustainability significantly increased with increasing soil fertility. The apparent N, P and K balances positively affected SFI.This study suggests that the appropriate amount of manure mixed with mineral NPK fertilizer is beneficial to the development of sustainable agriculture, which effectively increases the crop yield and yield sustainability by improving soil fertility.展开更多
BACKGROUND The introduction of pegaspargase has greatly advanced the treatment of acute lymphoblastic leukemia(ALL).In the literature,only one case of pegaspargaseinduced multiple organ failure has been reported,and t...BACKGROUND The introduction of pegaspargase has greatly advanced the treatment of acute lymphoblastic leukemia(ALL).In the literature,only one case of pegaspargaseinduced multiple organ failure has been reported,and the patient died due to multiple organ failure.CASE SUMMARY Herein,we present a rare case of a 40-year-old man with ALL who developed multiple organ failure after treatment with pegaspargase.The patient had two rare phenomena reflecting poor prognosis,including the discrepancy between clinical manifestations and liver function and persistently low alpha-fetoprotein(AFP)levels from subacute liver failure.However,the patient was successfully treated using a multidisciplinary team approach.CONCLUSION This is the first case report of successful treatment of pegaspargase-induced multiple organ failure.The findings emphasize the importance of a multidisciplinary team approach in treating pegaspargase-induced multiple organ failure.展开更多
With the advancement of agricultural modernization, agricultural machinery service organizations, as an important part of the rural operating entities, show an increasing trend year by year, and need new facilities la...With the advancement of agricultural modernization, agricultural machinery service organizations, as an important part of the rural operating entities, show an increasing trend year by year, and need new facilities land in the process of development and growth. Based on the written survey of 597 agricultural machinery service organizations in Guizhou Province, the demand and demand gap of various facilities land use in agricultural machinery service organizations were analyzed and compared. In addition, based on the field survey and policy background, the main practices and experiences of agricultural machinery service organizations in Guizhou Province in the approval and use of facility land were sorted out, and the problems and causes of large gap in facility agricultural land, lack of standards and difficulty in policy implementation were analyzed. Finally, it recommended that the site selection of agricultural machinery service organization facilities needs to be standardized, the land demand needs to be coordinated, the land scale needs to be scientifically demonstrated, and financial support should be sought to promote Guizhou agricultural machinery service organization to become bigger, better and stronger.展开更多
The alpine ecosystem has great potential for carbon sequestration.Soil organic carbon(SOC)and total nitrogen(TN)are highly sensitive to climate change,and their dynamics are crucial to revealing the effect of climate ...The alpine ecosystem has great potential for carbon sequestration.Soil organic carbon(SOC)and total nitrogen(TN)are highly sensitive to climate change,and their dynamics are crucial to revealing the effect of climate change on the structure,function,and services of the ecosystem.However,the spatial distribution and controlling factors of SOC and TN across various soil layers and vegetation types within this unique ecosystem remain inadequately understood.In this study,256 soil samples in 89 sites were collected from the Three River Headwaters Region(TRHR)in China to investigate SOC and TN and to explore the primary factors affecting their distribution,including soil,vegetation,climate,and geography factors.The results show that SOC and TN contents in 0-20,20-40,40-60,and 60-80 cm soil layers are 24.40,18.03,14.04,12.40 g/kg and 2.46,1.90,1.51,1.17 g/kg,respectively;with higher concentrations observed in the southeastern region compared to the northwest of the TRHR.One-way analysis of variance reveals that SOC and TN levels are elevated in the alpine meadow and the alpine shrub relative to the alpine steppe in the 0-60 cm soil layers.The structural equation model explores that soil water content is the main controlling factor affecting the variation of SOC and TN.Moreover,the geography,climate,and vegetation factors notably indirectly affect SOC and TN through soil factors.Therefore,it can effectively improve soil water and nutrient conditions through vegetation restoration,soil improvement,and grazing management,and the change of SOC and TN can be fully understood by establishing monitoring networks to better protect soil carbon and nitrogen.展开更多
[ Objective] The study aimed to supply important basis for developing environment-friendly pesticides with myricetin and crude extract of Myrica rubra leaves as effective components. [ Method] According to "Test guid...[ Objective] The study aimed to supply important basis for developing environment-friendly pesticides with myricetin and crude extract of Myrica rubra leaves as effective components. [ Method] According to "Test guidelines for environmental safety evaluation on chemical pesticides", the toxicity of myricetin and crude extract of M. rubra leaves on non-target organisms was determined and the safety evaluation was carried out. [Result] MyriceUn and crude extract of M. rubra leaves had low toxicity on non-target organisms, such as earthworm, silkworm and soil microbes. Myricetin showed low toxicity and the crude extract of M. rubra leaves showed middle toxicity on tadpole. The high-concentration crude extract of M. rubra leaves had some antifeedant effect on silkworm. [ Conclusion] Myricetin and crude extract of M. rubra leaves had low toxicity on non-tar- get organisms in environment and they were relatively safe.展开更多
文摘Objective: To determine the prevalence of colonization and transmission of carbapenem-resistant Gram-negative organisms in order to develop of an effective infection prevention program. Design: Cross-sectional study with carbapenem-resistant organisms (CRO) colonization detection from the fecal specimens of 20 Health Care Workers (HCWs) and 67 residents and 175 random environment specimens from September 2022 to September 2023. Setting: A Care and Protection Centre of Orphaned Children in South of HCM City. Participants: It included 20 HCWs, 67 residents, and 175 randomly collected environmental specimens. Method: Rectal and environmental swabs were collected from 20 HCWs, 67 residents (most of them were children), and 175 environmental specimens. MELAB Chromogenic CARBA agar plates, Card NID, and NMIC-500 CPO of the BD Phoenix TM Automated Microbiology System and whole genome sequencing (WGS) were the tests to screen, confirm CROs, respectively and determine CRO colonization and transmission between HCWs, residents, and the environment. Result: We detected 36 CRO isolates, including 6, 11 and 19 CROs found in 6 HCWs, 10 residents and 19 environments. The prevalence of detectable CRO was 30% (6/20) in HCWs, 14.92% (10/67) in residents, and 10.86% (19/175) in environmental swabs in our study. WGS demonstrated CRO colonization and transmission with the clonal spread of E. coli and A. nosocomialis, among HCWs and residents (children). Conclusion: Significant CRO colonization and transmission was evident in HCWs, residents, and the center environment. Cleaning and disinfection of the environment and performing regular hand hygiene are priorities to reduce the risk of CRO colonization and transmission.
基金Supported by Zhaoqing University Innovation and Entrepreneurship Training Program for College Students(202310580018).
文摘[Objectives]To study the phosphorus removal performance of phosphate accumulating organisms(PAOs).[Methods]Activated sludge from domestic sewage treatment plant was used as the strain source,and phosphate accumulating organisms were screened by plate streaking method and dilution coating plate method.Six kinds of excellent phosphate accumulating organisms were obtained by metachromatic granule staining experiment,total phosphorus experiment and simulated sewage phosphorus removal experiment to assist the observation of bac-terial morphology and experiment of phosphorus removal capacity.In addition,the influencing factors of phosphorus removal capacity(nitrogen source,trace metal ions)were analyzed.[Results]In the case of simulated sewage,the phosphorus removal rate of strain b was the highest,reaching 66.25%,while the phosphorus removal rate of strain e and f was about 10%lower than that of the phosphorus uptake experiment.[Conclusions]This study is expected to provide a theoretical reference for the gradual optimization of the screening method of phosphorus re-moval bacteria in domestic sewage treatment.
文摘BACKGROUND Transplant recipients commonly harbor multidrug-resistant organisms(MDROs),as a result of frequent hospital admissions and increased exposure to antimi-crobials and invasive procedures.AIM To investigate the impact of patient demographic and clinical characteristics on MDRO acquisition,as well as the impact of MDRO acquisition on intensive care unit(ICU)and hospital length of stay,and on ICU mortality and 1-year mortality post heart transplantation.METHODS This retrospective cohort study analyzed 98 consecutive heart transplant patients over a ten-year period(2013-2022)in a single transplantation center.Data was collected regarding MDROs commonly encountered in critical care.RESULTS Among the 98 transplanted patients(70%male),about a third(32%)acquired or already harbored MDROs upon transplantation(MDRO group),while two thirds did not(MDRO-free group).The prevalent MDROs were Acinetobacter baumannii(14%),Pseudomonas aeruginosa(12%)and Klebsiella pneumoniae(11%).Compared to MDRO-free patients,the MDRO group was characterized by higher body mass index(P=0.002),higher rates of renal failure(P=0.017),primary graft dysfunction(10%vs 4.5%,P=0.001),surgical re-exploration(34%vs 14%,P=0.017),mechanical circulatory support(47%vs 26%P=0.037)and renal replacement therapy(28%vs 9%,P=0.014),as well as longer extracorporeal circulation time(median 210 vs 161 min,P=0.003).The median length of stay was longer in the MDRO group,namely ICU stay was 16 vs 9 d in the MDRO-free group(P=0.001),and hospital stay was 38 vs 28 d(P=0.006),while 1-year mortality was higher(28%vs 7.6%,log-rank-χ2:7.34).CONCLUSION Following heart transplantation,a predominance of Gram-negative MDROs was noted.MDRO acquisition was associated with higher complication rates,prolonged ICU and total hospital stay,and higher post-transplantation mortality.
基金supported by grants from the Natural Science Foundation of Tianjin(General Program),Nos.23JCYBJC01390(to RL),22JCYBJC00220(to XC),and 22JCYBJC00210(to QL).
文摘Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.
文摘Although national transplant organizations share common visions and goals,the creation of a unified global organization remains impractical.Differences in ethnicity,culture,religion,and education shape local practices and infrastructure,making the establishment of a single global entity unfeasible.Even with these social disparities aside,logistical factors such as time and distance between organ procurement and transplantation sites pose significant challenges.While technological advancements have extended organ preservation times,they have yet to support the demands of transcontinental transplantations effectively.This review presents a comparative analysis of the structures,operational frameworks,policies,and legislation governing various transplant organizations around the world.Key differences pertain to the administration of these organizations,trends in organ donation,and organ allocation policies,which reflect the financial,cultural,and religious diversity across different regions.While a global transplant organization may be out of reach,agreeing on best practices for the benefit of patients is essential.
基金funding from National Science Foundation of China(52202337 and 22178015)the Young Taishan Scholars Program of Shandong Province(tsqn202211082)+1 种基金Natural Science Foundation of Shandong Province(ZR2023MB051)Independent Innovation Research Project of China University of Petroleum(East China)(22CX06023A).
文摘Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(PSC)technology.However,two-dimensional(2D)or quasi-2D RP PSCs are encountered with some challenges of the large exciton binding energy,blocked charge transport and poor film quality,which restrict their photovoltaic performance.Fortunately,these issues can be readily resolved by rationally designing spacer cations of RPPs.This review mainly focuses on how to design the molecular structures of organic spacers and aims to endow RPPs with outstanding photovoltaic applications.We firstly elucidated the important roles of organic spacers in impacting crystallization kinetics,charge transporting ability and stability of RPPs.Then we brought three aspects to attention for designing organic spacers.Finally,we presented the specific molecular structure design strategies for organic spacers of RPPs aiming to improve photovoltaic performance of RP PSCs.These proposed strategies in this review will provide new avenues to develop novel organic spacers for RPPs and advance the development of RPP photovoltaic technology for future applications.
基金supported by the National Natural Science Foundation of China(No.92372123)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515012057,2022B1515020005,2023B1515130004)Guangzhou Basic and Applied Basic Research Foundation(No.202201011342).
文摘Porous organic cages(POCs)with permanent porosity and excellent host–guest property hold great potentials in regulating ion transport behavior,yet their feasibility as solid-state electrolytes has never been testified in a practical battery.Herein,we design and fabricate a quasi-solid-state electrolyte(QSSE)based on a POC to enable the stable operation of Li-metal batteries(LMBs).Benefiting from the ordered channels and cavity-induced anion-trapping effect of POC,the resulting POC-based QSSE exhibits a high Li+transference number of 0.67 and a high ionic conductivity of 1.25×10^(−4) S cm^(−1) with a low activation energy of 0.17 eV.These allow for homogeneous Li deposition and highly reversible Li plating/stripping for over 2000 h.As a proof of concept,the LMB assembled with POC-based QSSE demonstrates extremely stable cycling performance with 85%capacity retention after 1000 cycles.Therefore,our work demonstrates the practical applicability of POC as SSEs for LMBs and could be extended to other energy-storage systems,such as Na and K batteries.
基金Technology Development Program of Jilin Province(YDZJ202201ZYTS640)the National Key Research and Development Program of China(2022YFB4200400)funded by MOST+4 种基金the National Natural Science Foundation of China(52172048 and 52103221)Shandong Provincial Natural Science Foundation(ZR2021QB024 and ZR2021ZD06)Guangdong Basic and Applied Basic Research Foundation(2023A1515012323,2023A1515010943,and 2024A1515010023)the Qingdao New Energy Shandong Laboratory open Project(QNESL OP 202309)the Fundamental Research Funds of Shandong University.
文摘Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs.
文摘BACKGROUND Machine learning(ML),a major branch of artificial intelligence,has not only demonstrated the potential to significantly improve numerous sectors of healthcare but has also made significant contributions to the field of solid organ transplantation.ML provides revolutionary opportunities in areas such as donorrecipient matching,post-transplant monitoring,and patient care by automatically analyzing large amounts of data,identifying patterns,and forecasting outcomes.AIM To conduct a comprehensive bibliometric analysis of publications on the use of ML in transplantation to understand current research trends and their implications.METHODS On July 18,a thorough search strategy was used with the Web of Science database.ML and transplantation-related keywords were utilized.With the aid of the VOS viewer application,the identified articles were subjected to bibliometric variable analysis in order to determine publication counts,citation counts,contributing countries,and institutions,among other factors.RESULTS Of the 529 articles that were first identified,427 were deemed relevant for bibliometric analysis.A surge in publications was observed over the last four years,especially after 2018,signifying growing interest in this area.With 209 publications,the United States emerged as the top contributor.Notably,the"Journal of Heart and Lung Transplantation"and the"American Journal of Transplantation"emerged as the leading journals,publishing the highest number of relevant articles.Frequent keyword searches revealed that patient survival,mortality,outcomes,allocation,and risk assessment were significant themes of focus.CONCLUSION The growing body of pertinent publications highlights ML's growing presence in the field of solid organ transplantation.This bibliometric analysis highlights the growing importance of ML in transplant research and highlights its exciting potential to change medical practices and enhance patient outcomes.Encouraging collaboration between significant contributors can potentially fast-track advancements in this interdisciplinary domain.
文摘BACKGROUND In the absence of effective antimicrobials,transplant surgery is not viable,and antirejection immunosuppressants cannot be administered,as resistant infections compromise the life-saving goal of organ transplantation.AIM To evaluate the efficacy of antimicrobials in preventing resistance in solid organ transplant recipients.METHODS A systematic review was conducted using a search methodology consistent with the preferred reporting items for systematic reviews and meta-analyses.This review included randomized clinical trials that evaluated the efficacy of antimicrobial agents(prophylactic or therapeutic)aimed at preventing antimicrobial resistance.The search strategy involved analyzing multiple databases,including PubMed/MEDLINE,Web of Science,Embase,Scopus,and SciELO,as well as examining gray literature sources on Google Scholar.A comprehensive electronic database search was conducted from the databases’inception until May 2024,with no language restrictions.RESULTS After the final phase of the eligibility assessment,this systematic review ultimate-ly included 7 articles.A total of 2318 patients were studied.The most studied microorganisms were cytomegalovirus,although vancomycinresistant enterococci,Clostridioides difficile,and multidrug-resistant Enterobacterales were also analyzed.The antimicrobials used in the interventions were mainly maribavir,valganciclovir,gancic-lovir,and colistin-neomycin.Of concern,all clinical trials showed significant proportions of resistant microorga-nisms after the interventions,with no statistically significant differences between the groups(mean resistance 13.47%vs 14.39%),except for two studies that demonstrated greater efficacy of maribavir and valganciclovir(mean resistance 22.2%vs 41.1%in the control group;P<0.05).The total reported deaths in three clinical trials were 75,and there were 24 graft rejections in two studies.CONCLUSION All clinical trials reported significant proportions of antimicrobial-resistant microorganisms following interventions.More high-quality randomized clinical trials are needed to corroborate these results.
基金supported by the Shenyang Municipal Science and Technology Project,China(23-409-2-03)the Liaoning Provincial Department of Science and Technology Project,China(Z20230183)the Liaoning Provincial Applied Basic Research Program,China(2022JH2/101300173).
文摘Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic fertilizer is not well understood.In a 3-year field experiment, we aimed to investigate the factors which drive the stability of soil aggregates in greenhouse soil.To explore the impact of organic fertilizer on soil aggregates, we established four treatments:no fertilization (CK);inorganic fertilizer (CF);organic fertilizer (OF);and combined application of inorganic and organic fertilizers(COF).The application of organic fertilizer significantly enhanced the stability of aggregates, that is it enhanced the mean weight diameter, geometric mean diameter and aggregate content (%) of>0.25 mm aggregate fractions.OF and COF treatments increased the concentration of SOC, especially the aliphatic-C, aromatic-C and polysaccharide-C components of SOC, particularly in>0.25 mm aggregates.Organic fertilizer application significantly increased the content of free Fe(Fed), reactive Fe (Feo), and non-crystalline Fe in both bulk soil and aggregates.Furthermore, non-crystalline Fe showed a positive correlation with SOC content in both bulk soil and aggregates.Both non-crystalline Fe and SOC were significantly positively correlated with>2 mm mean weight diameter.Overall, we believe that the increase of SOC, aromatic-C, and non-crystal ine Fe concentrations in soil after the application of organic fertilizer is the reason for improving soil aggregate stability.
文摘Solid organ tumors present a significant healthcare challenge,both economically and logistically,due to their high incidence and treatment complexity.In 2023,out of the 1.9 million new cancer cases in the United States,over 73%were solid organ tumors.Ablative therapies offer minimally invasive solutions for malignant tissue destruction in situ,often with reduced cost and morbidity compared to surgical resection.This review examines the current Food and Drug Administration-approved locoregional ablative therapies(radiofrequency,microwave,cryogenic,high-intensity focused ultrasound,histotripsy)and their evolving role in cancer care.Data were collected through a comprehensive survey of the PubMed-inde-xed literature on tumor ablation techniques,their clinical indications,and outco-mes.Over time,emerging clinical data will help establish these therapies as the standard of care in solid organ tumor treatment,supported by improved long-term outcomes and progression-free survival.
基金financially supported by the National Natural Science Foundation of China,No.823 74552 (to WP)the Science and Technology Innovation Program of Hunan Province,No.2022RC1220 (to WP)+1 种基金the Natural Science Foundation of Hunan Province of China,Nos.2020JJ4803 (to WP),2022JJ40723 (to MY)the Scientific Research Launch Project for New Employees of the Second Xiangya Hospital of Central South University (to MY)
文摘Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzheimer’s disease,in particular the association between changes in peripheral organ metabolism,changes in gut microbial composition,and Alzheimer’s disease development.To do this,we analyzed peripheral organ metabolism and the gut microbiota in amyloid precursor protein-presenilin 1(APP/PS1)transgenic and control mice at 3,6,9,and 12 months of age.Twelve-month-old APP/PS1 mice exhibited cognitive impairment,Alzheimer’s disease-related brain changes,distinctive metabolic disturbances in peripheral organs and fecal samples(as detected by untargeted metabolomics sequencing),and substantial changes in gut microbial composition compared with younger APP/PS1 mice.Notably,a strong correlation emerged between the gut microbiota and kidney metabolism in APP/PS1 mice.These findings suggest that alterations in peripheral organ metabolism and the gut microbiota are closely related to Alzheimer’s disease development,indicating potential new directions for therapeutic strategies.
基金supported by the National Natural Science Foundation of China(Grant No.62074163)Beijing Natural Science Foundation(Grant No.JQ24030).
文摘Organic electrochemical transistors have emerged as a solution for artificial synapses that mimic the neural functions of the brain structure,holding great potentials to break the bottleneck of von Neumann architectures.However,current artificial synapses rely primarily on electrical signals,and little attention has been paid to the vital role of neurotransmitter-mediated artificial synapses.Dopamine is a key neurotransmitter associated with emotion regulation and cognitive processes that needs to be monitored in real time to advance the development of disease diagnostics and neuroscience.To provide insights into the development of artificial synapses with neurotransmitter involvement,this review proposes three steps towards future biomimic and bioinspired neuromorphic systems.We first summarize OECT-based dopamine detection devices,and then review advances in neurotransmitter-mediated artificial synapses and resultant advanced neuromorphic systems.Finally,by exploring the challenges and opportunities related to such neuromorphic systems,we provide a perspective on the future development of biomimetic and bioinspired neuromorphic systems.
基金supported by the National Natural Science Foundation of China(42177341)the Natural Science Basic Research Program of Shanxi,China(202203021222138).
文摘Organic material combined with inorganic fertilizer has been shown to greatly improve crop yield and maintain soil fertility globally. However, it remains unclear if crop yield and soil fertility can be sustained in the long term under the combined application of organic and inorganic fertilizers. Three long-term field trials were conducted to investigate the effects of organic amendments on the grain sustainable yield index(SYI), soil fertility index(SFI)and nutrient balance in maize–wheat cropping systems of central and southern China during 1991–2019. Five treatments were included in the trials: 1) no fertilization(control);2) balanced mineral fertilization(NPK);3) NPK plus manure(NPKM);4) high dose of NPK plus manure(1.5NPKM);and 5) NPK plus crop straw(NPKS). Over time, the grain yields of wheat and maize showed an increasing trend in all four fertilization treatments at the Yangling(YL) and Zhengzhou(ZZ) locations, while they declined at Qiyang(QY). The grain yield in the NPKM and 1.5NPKM treatments gradually exceeded that of the NPK and NPKS treatments at the QY site. The largest SYI was recorded in the NPKM treatment across the three sites, suggesting that inorganic fertilizer combined with manure can effectively improve crop yield sustainability. Higher SYI values were recorded at the YL and ZZ sites than at the QY site, possibly because the soil was more acid at QY. The key factors affecting grain yield were soil available phosphorus(AP) and available potassium(AK) at the YL and ZZ sites, and pH and AP at the QY site.All fertilization treatments resulted in soil N and P surpluses at the three sites, but soil K surpluses were recorded only at the QY site. The SFI was greater in the 1.5NPKM, NPKM and NPKS treatments than in the NPK treatment by 13.3–40.0 and 16.4–63.6% at the YL and ZZ sites, respectively, and was significantly higher in the NPKM and 1.5NPKM treatments than in the NPK and NPKS treatments at the QY site. A significant, positive linear relationship was found between SFI and crop yield, and SYI and nutrient balance, indicating that grain yield and its sustainability significantly increased with increasing soil fertility. The apparent N, P and K balances positively affected SFI.This study suggests that the appropriate amount of manure mixed with mineral NPK fertilizer is beneficial to the development of sustainable agriculture, which effectively increases the crop yield and yield sustainability by improving soil fertility.
基金Supported by National Natural Science Foundation of China,No.82100625Zhejiang Provincial natural Science Foundation of China,No.Q20H030013.
文摘BACKGROUND The introduction of pegaspargase has greatly advanced the treatment of acute lymphoblastic leukemia(ALL).In the literature,only one case of pegaspargaseinduced multiple organ failure has been reported,and the patient died due to multiple organ failure.CASE SUMMARY Herein,we present a rare case of a 40-year-old man with ALL who developed multiple organ failure after treatment with pegaspargase.The patient had two rare phenomena reflecting poor prognosis,including the discrepancy between clinical manifestations and liver function and persistently low alpha-fetoprotein(AFP)levels from subacute liver failure.However,the patient was successfully treated using a multidisciplinary team approach.CONCLUSION This is the first case report of successful treatment of pegaspargase-induced multiple organ failure.The findings emphasize the importance of a multidisciplinary team approach in treating pegaspargase-induced multiple organ failure.
文摘With the advancement of agricultural modernization, agricultural machinery service organizations, as an important part of the rural operating entities, show an increasing trend year by year, and need new facilities land in the process of development and growth. Based on the written survey of 597 agricultural machinery service organizations in Guizhou Province, the demand and demand gap of various facilities land use in agricultural machinery service organizations were analyzed and compared. In addition, based on the field survey and policy background, the main practices and experiences of agricultural machinery service organizations in Guizhou Province in the approval and use of facility land were sorted out, and the problems and causes of large gap in facility agricultural land, lack of standards and difficulty in policy implementation were analyzed. Finally, it recommended that the site selection of agricultural machinery service organization facilities needs to be standardized, the land demand needs to be coordinated, the land scale needs to be scientifically demonstrated, and financial support should be sought to promote Guizhou agricultural machinery service organization to become bigger, better and stronger.
基金supported by the National Science Foundation for Distinguished Young Scholars(No.42425107)Ecological Civilization Special Project of Key Research&and Development Program in Gansu Province(No.24YFFA009)the Top Talent Project of Gansu Province,Chinese Academy of Sciences Young Crossover Team Project(No.JCTD-2022-18)。
文摘The alpine ecosystem has great potential for carbon sequestration.Soil organic carbon(SOC)and total nitrogen(TN)are highly sensitive to climate change,and their dynamics are crucial to revealing the effect of climate change on the structure,function,and services of the ecosystem.However,the spatial distribution and controlling factors of SOC and TN across various soil layers and vegetation types within this unique ecosystem remain inadequately understood.In this study,256 soil samples in 89 sites were collected from the Three River Headwaters Region(TRHR)in China to investigate SOC and TN and to explore the primary factors affecting their distribution,including soil,vegetation,climate,and geography factors.The results show that SOC and TN contents in 0-20,20-40,40-60,and 60-80 cm soil layers are 24.40,18.03,14.04,12.40 g/kg and 2.46,1.90,1.51,1.17 g/kg,respectively;with higher concentrations observed in the southeastern region compared to the northwest of the TRHR.One-way analysis of variance reveals that SOC and TN levels are elevated in the alpine meadow and the alpine shrub relative to the alpine steppe in the 0-60 cm soil layers.The structural equation model explores that soil water content is the main controlling factor affecting the variation of SOC and TN.Moreover,the geography,climate,and vegetation factors notably indirectly affect SOC and TN through soil factors.Therefore,it can effectively improve soil water and nutrient conditions through vegetation restoration,soil improvement,and grazing management,and the change of SOC and TN can be fully understood by establishing monitoring networks to better protect soil carbon and nitrogen.
基金Supported by Major Program in Zhejiang Science and Technology Department(2008C22G2100038)Emerging Artists Project in Zhejiang Province(21000037)~~
文摘[ Objective] The study aimed to supply important basis for developing environment-friendly pesticides with myricetin and crude extract of Myrica rubra leaves as effective components. [ Method] According to "Test guidelines for environmental safety evaluation on chemical pesticides", the toxicity of myricetin and crude extract of M. rubra leaves on non-target organisms was determined and the safety evaluation was carried out. [Result] MyriceUn and crude extract of M. rubra leaves had low toxicity on non-target organisms, such as earthworm, silkworm and soil microbes. Myricetin showed low toxicity and the crude extract of M. rubra leaves showed middle toxicity on tadpole. The high-concentration crude extract of M. rubra leaves had some antifeedant effect on silkworm. [ Conclusion] Myricetin and crude extract of M. rubra leaves had low toxicity on non-tar- get organisms in environment and they were relatively safe.