In this paper,we prove that there does not exist an r-UPC[2]-graph for each r≥5 and there does not exist an r-UPC[C_t^2]-graph for each r≥3,where t is the number of bridges in a graph and C_t^2 is the number of comb...In this paper,we prove that there does not exist an r-UPC[2]-graph for each r≥5 and there does not exist an r-UPC[C_t^2]-graph for each r≥3,where t is the number of bridges in a graph and C_t^2 is the number of combinations of t bridges taken 2 at a time.展开更多
Let G be a 2 connected graph with n vertices. In this paper, we prove that if there exist two vertices of any there independent vertices in G such that the sum of whose degree is at least n , then G ...Let G be a 2 connected graph with n vertices. In this paper, we prove that if there exist two vertices of any there independent vertices in G such that the sum of whose degree is at least n , then G is pancyclic, or G is K n/2,n/2 , or G is K n/2,n/2 -e , or G is a cycle of length 5.展开更多
Let G=(V, E) be a hamiltonian K 1.3 free graph such that d(x) |V| 2 and G is connected for some vertex x of G . Then G is pancyclic with a few number of exceptions.
文摘In this paper,we prove that there does not exist an r-UPC[2]-graph for each r≥5 and there does not exist an r-UPC[C_t^2]-graph for each r≥3,where t is the number of bridges in a graph and C_t^2 is the number of combinations of t bridges taken 2 at a time.
文摘Let G be a 2 connected graph with n vertices. In this paper, we prove that if there exist two vertices of any there independent vertices in G such that the sum of whose degree is at least n , then G is pancyclic, or G is K n/2,n/2 , or G is K n/2,n/2 -e , or G is a cycle of length 5.
文摘Let G=(V, E) be a hamiltonian K 1.3 free graph such that d(x) |V| 2 and G is connected for some vertex x of G . Then G is pancyclic with a few number of exceptions.