The study of spatial econometrics has developed rapidly and has found wide applications in many different scientific fields,such as demography,epidemiology,regional economics,and psychology.With the deepening of...The study of spatial econometrics has developed rapidly and has found wide applications in many different scientific fields,such as demography,epidemiology,regional economics,and psychology.With the deepening of research,some scholars find that there are some model specifications in spatial econometrics,such as spatial autoregressive(SAR)model and matrix exponential spatial specification(MESS),which cannot be nested within each other.Compared with the common SAR models,the MESS models have computational advantages because it eliminates the need for logarithmic determinant calculation in maximum likelihood estimation and Bayesian estimation.Meanwhile,MESS models have theoretical advantages.However,the theoretical research and application of MESS models have not been promoted vigorously.Therefore,the study of MESS model theory has practical significance.This paper studies the quasi maximum likelihood estimation for matrix exponential spatial specification(MESS)varying coefficient panel data models with fixed effects.It is shown that the estimators of model parameters and function coefficients satisfy the consistency and asymptotic normality to make a further supplement for the theoretical study of MESS model.展开更多
In this paper,a unified diagnostic method for the nonlinear models with random effects based upon the joint likelihood given by Robinson in 1991 is presented.It is shown that the case deletion model is equivalent to t...In this paper,a unified diagnostic method for the nonlinear models with random effects based upon the joint likelihood given by Robinson in 1991 is presented.It is shown that the case deletion model is equivalent to the mean shift outlier model.From this point of view,several diagnostic measures,such as Cook distance,score statistics are derived.The local influence measure of Cook is also presented. A numerical example illustrates that the method is available.展开更多
This paper presents a unified diagnostic method for exponential nonlinear models with random effects based upon the joint likelihood given by Robinson in 1991. The authors show that the case deletion model is equivale...This paper presents a unified diagnostic method for exponential nonlinear models with random effects based upon the joint likelihood given by Robinson in 1991. The authors show that the case deletion model is equivalent to mean shift outlier model. From this point of view, several diagnostic measures, such as Cook distance, score statistics are derived. The local influence measure of Cook is also presented. Numerical example illustrates that our method is available.展开更多
In this paper,we consider the statistical inference problems for the fixed effect and variance component functions in the two-way classification random effects model with skewnormal errors.Firstly,the exact test stati...In this paper,we consider the statistical inference problems for the fixed effect and variance component functions in the two-way classification random effects model with skewnormal errors.Firstly,the exact test statistic for the fixed effect is constructed.Secondly,using the Bootstrap approach and generalized approach,the one-sided hypothesis testing and interval estimation problems for the single variance component,the sum and ratio of variance components are discussed respectively.Further,the Monte Carlo simulation results indicate that the exact test statistic performs well in the one-sided hypothesis testing problem for the fixed effect.And the Bootstrap approach is better than the generalized approach in the one-sided hypothesis testing problems for variance component functions in most cases.Finally,the above approaches are applied to the real data examples of the consumer price index and value-added index of three industries to verify their rationality and effectiveness.展开更多
The panel dataset which covered the socio-economic data of 31 provinces (municipalities and autonomous region) in China from 2000-2007 was used to do empirical analysis on the effect of abolishing agricultural taxes...The panel dataset which covered the socio-economic data of 31 provinces (municipalities and autonomous region) in China from 2000-2007 was used to do empirical analysis on the effect of abolishing agricultural taxes on farmers' income by referring to the fixed effect estimation method. It found that the abolition of agricultural taxes increased farmer's net income per capita by 2%. Combining with the results of empirical analysis, related policy suggestions were put forward to increase farmers' income.展开更多
We consider the problem of variable selection for the fixed effects varying coefficient models. A variable selection procedure is developed using basis function approximations and group nonconcave penalized functions,...We consider the problem of variable selection for the fixed effects varying coefficient models. A variable selection procedure is developed using basis function approximations and group nonconcave penalized functions, and the fixed effects are removed using the proper weight matrices. The proposed procedure simultaneously removes the fixed individual effects, selects the significant variables and estimates the nonzero coefficient functions. With appropriate selection of the tuning parameters, an asymptotic theory for the resulting estimates is established under suitable conditions. Simulation studies are carried out to assess the performance of our proposed method, and a real data set is analyzed for further illustration.展开更多
This paper considers a semi-varying coefficient model for panel data with fixed effects,proposes the profile-likelihood-based estimators for the parametric and nonparametric components,and establishes convergence rate...This paper considers a semi-varying coefficient model for panel data with fixed effects,proposes the profile-likelihood-based estimators for the parametric and nonparametric components,and establishes convergence rates and asymptotic normality properties for both estimators.Simulation results show that the proposed estimators behave well in finite sample cases.展开更多
What is sustainability? Does it only concern the environment or even socio-economic policies? It is only a question of ethics or a redefinition of industrial policy oriented towards the use of renewable energy, it can...What is sustainability? Does it only concern the environment or even socio-economic policies? It is only a question of ethics or a redefinition of industrial policy oriented towards the use of renewable energy, it can bring benefits both atmospheric and social employment. The need for the development of renewable sources can be in tune with the correct management of the territory in consideration of the fact that these sources involve the widespread implementation of small and medium-sized plants. A model of economic development based on renewable sources should respect the peculiarities and characteristics of the territories involved. It should also think of the territory as a “value” to be strengthened and used in a sustainable and integrated way and no longer as a passive platform on which to install plants. Solar thermal and photovoltaic, biomass, geothermal, hydrological, wind power are some of the sources the various countries must constantly invest. This publication is based on these concepts starting from an analysis of the employment data of the OECD “Organisation for Economic Co-operation and Development countries”, comparing them successively with the results of renewable energy productivity. The analysis was performed by analyzing a sample of 22 countries over a period of 20 years, after which the regression curve for the variables with the OLS method was created. This econometric method has allowed us to analyze the impact that renewable technologies have on the parameters of social welfare and in particular on unemployment.展开更多
In this review, we highlight some recent methodological and theoretical develop- ments in estimation and testing of large panel data models with cross-sectional dependence. The paper begins with a discussion of issues...In this review, we highlight some recent methodological and theoretical develop- ments in estimation and testing of large panel data models with cross-sectional dependence. The paper begins with a discussion of issues of cross-sectional dependence, and introduces the concepts of weak and strong cross-sectional dependence. Then, the main attention is primarily paid to spatial and factor approaches for modeling cross-sectional dependence for both linear and nonlinear (nonparametric and semiparametric) panel data models. Finally, we conclude with some speculations on future research directions.展开更多
This paper applies bootstrap methods to LM tests(including LM-lag test and LM-error test) for spatial dependence in panel data models with fixed effects, and removes fixed effects based on orthogonal transformation me...This paper applies bootstrap methods to LM tests(including LM-lag test and LM-error test) for spatial dependence in panel data models with fixed effects, and removes fixed effects based on orthogonal transformation method proposed by Lee and Yu(2010). The consistencies of LM tests and their bootstrap versions are proved, and then some asymptotic refinements of bootstrap LM tests are obtained. It shows that the convergence rate of bootstrap LM tests is O((N T)-2) and that of fast double bootstrap LM tests is O((NT)-5/2). Extensive Monte Carlo experiments suggest that,compared to aysmptotic LM tests, the size of bootstrap LM tests gets closer to the nominal level of signifiance, and the power of bootstrap LM tests is higher, especially in the cases with small spatial correlation. Moreover, when the error is not normal or with heteroskedastic, asymptotic LM tests suffer from severe size distortion, but the size of bootstrap LM tests is close to the nominal significance level.Bootstrap LM tests are superior to aysmptotic LM tests in terms of size and power.展开更多
Based on the panel data of 31 provinces and municipalities inChinafrom 1998 to 2016, this paper studies the effect of demographic structure on social security expenditure inChinaby using entity fixed effect regression...Based on the panel data of 31 provinces and municipalities inChinafrom 1998 to 2016, this paper studies the effect of demographic structure on social security expenditure inChinaby using entity fixed effect regression model. The results show that there is a long-term co-integration relationship between population aging and social security expenditure in the demographic structure, and there is a positive correlation between population aging and social security expenditure. And the different cross-sectional effects in 31 regions of China reflect the difference between population aging and social security expenditure in different regions of China.展开更多
This paper combines energy demand modelling with stochastic frontier analysis to investigate the changing trends,variations and determinants of energy efficiency for 27 Chinese provinces over the period 1995 to 2014.A...This paper combines energy demand modelling with stochastic frontier analysis to investigate the changing trends,variations and determinants of energy efficiency for 27 Chinese provinces over the period 1995 to 2014.An aggregate‘frontier’energy demand function and an efficiency function are estimated simultaneously.We obtained several findings.First,the energy intensity is not a particularly good indicator of energy efficiency.Second,the energy efficiency levels for all the provinces improved during the sample period,but the current efficiency levels are still low,implying great potential for energy saving.In addition,the energy efficiency gap among the provinces seems to have widened over the past 20 years,as the variance has increased by almost three times.Finally,technological progress driven by new investment and the development of market mechanisms are two important drivers of energy efficiency improvement.展开更多
Today, Linear Mixed Models (LMMs) are fitted, mostly, by assuming that random effects and errors have Gaussian distributions, therefore using Maximum Likelihood (ML) or REML estimation. However, for many data sets, th...Today, Linear Mixed Models (LMMs) are fitted, mostly, by assuming that random effects and errors have Gaussian distributions, therefore using Maximum Likelihood (ML) or REML estimation. However, for many data sets, that double assumption is unlikely to hold, particularly for the random effects, a crucial component </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">in </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">which assessment of magnitude is key in such modeling. Alternative fitting methods not relying on that assumption (as ANOVA ones and Rao</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">’</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s MINQUE) apply, quite often, only to the very constrained class of variance components models. In this paper, a new computationally feasible estimation methodology is designed, first for the widely used class of 2-level (or longitudinal) LMMs with only assumption (beyond the usual basic ones) that residual errors are uncorrelated and homoscedastic, with no distributional assumption imposed on the random effects. A major asset of this new approach is that it yields nonnegative variance estimates and covariance matrices estimates which are symmetric and, at least, positive semi-definite. Furthermore, it is shown that when the LMM is, indeed, Gaussian, this new methodology differs from ML just through a slight variation in the denominator of the residual variance estimate. The new methodology actually generalizes to LMMs a well known nonparametric fitting procedure for standard Linear Models. Finally, the methodology is also extended to ANOVA LMMs, generalizing an old method by Henderson for ML estimation in such models under normality.展开更多
Based on panel data such as 2009-2018 R&D expenditures,full-time equivalent of R&D personnel,Number of valid invention patents,and technology market turnover in China's Shanghai,Jiangsu,Zhejiang,and Anhui ...Based on panel data such as 2009-2018 R&D expenditures,full-time equivalent of R&D personnel,Number of valid invention patents,and technology market turnover in China's Shanghai,Jiangsu,Zhejiang,and Anhui provinces(cities),using Griliches-Jaffe knowledge to produce Function,construct Time fixed effects model,conduct empirical research on the main factors affecting the technological innovation capability of the Yangtze River Delta,focusing on the relationship between the technological market and technological innovation capability.The results show that human capital and R&D expenditures have a significant and positive impact on the technological innovation capacity of the Yangtze River Delta.Although the technology market has a positive effect on the scientific and technological innovation capacity of the Yangtze River Delta,the effect is not significant.Propose countermeasures and suggestions to strengthen the influence of the technology market on technological innovation.展开更多
基金supported by the Innovation Project of Guangxi Graduate Education(YCSW2021073).
文摘The study of spatial econometrics has developed rapidly and has found wide applications in many different scientific fields,such as demography,epidemiology,regional economics,and psychology.With the deepening of research,some scholars find that there are some model specifications in spatial econometrics,such as spatial autoregressive(SAR)model and matrix exponential spatial specification(MESS),which cannot be nested within each other.Compared with the common SAR models,the MESS models have computational advantages because it eliminates the need for logarithmic determinant calculation in maximum likelihood estimation and Bayesian estimation.Meanwhile,MESS models have theoretical advantages.However,the theoretical research and application of MESS models have not been promoted vigorously.Therefore,the study of MESS model theory has practical significance.This paper studies the quasi maximum likelihood estimation for matrix exponential spatial specification(MESS)varying coefficient panel data models with fixed effects.It is shown that the estimators of model parameters and function coefficients satisfy the consistency and asymptotic normality to make a further supplement for the theoretical study of MESS model.
基金The research project supported by NSFC(1 9631 0 4 0 ) and NSFJ
文摘In this paper,a unified diagnostic method for the nonlinear models with random effects based upon the joint likelihood given by Robinson in 1991 is presented.It is shown that the case deletion model is equivalent to the mean shift outlier model.From this point of view,several diagnostic measures,such as Cook distance,score statistics are derived.The local influence measure of Cook is also presented. A numerical example illustrates that the method is available.
文摘This paper presents a unified diagnostic method for exponential nonlinear models with random effects based upon the joint likelihood given by Robinson in 1991. The authors show that the case deletion model is equivalent to mean shift outlier model. From this point of view, several diagnostic measures, such as Cook distance, score statistics are derived. The local influence measure of Cook is also presented. Numerical example illustrates that our method is available.
基金supported by National Social Science Foundation of China(21BTJ068)。
文摘In this paper,we consider the statistical inference problems for the fixed effect and variance component functions in the two-way classification random effects model with skewnormal errors.Firstly,the exact test statistic for the fixed effect is constructed.Secondly,using the Bootstrap approach and generalized approach,the one-sided hypothesis testing and interval estimation problems for the single variance component,the sum and ratio of variance components are discussed respectively.Further,the Monte Carlo simulation results indicate that the exact test statistic performs well in the one-sided hypothesis testing problem for the fixed effect.And the Bootstrap approach is better than the generalized approach in the one-sided hypothesis testing problems for variance component functions in most cases.Finally,the above approaches are applied to the real data examples of the consumer price index and value-added index of three industries to verify their rationality and effectiveness.
文摘The panel dataset which covered the socio-economic data of 31 provinces (municipalities and autonomous region) in China from 2000-2007 was used to do empirical analysis on the effect of abolishing agricultural taxes on farmers' income by referring to the fixed effect estimation method. It found that the abolition of agricultural taxes increased farmer's net income per capita by 2%. Combining with the results of empirical analysis, related policy suggestions were put forward to increase farmers' income.
基金Supported by National Natural Science Foundation of China(Grant Nos.11471029,11101014 and 11301279)the Beijing Natural Science Foundation(Grant No.1142002+3 种基金the Science and Technology Project of Beijing Municipal Education Commission(Grant No.KM201410005010)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.12KJB110016)CERG Grant from the Hong Kong Research Grants Council(Grant No.HKBU 202012)FRG Grant from Hong Kong Baptist University(Grant No.FRG2/12-13/077)
文摘We consider the problem of variable selection for the fixed effects varying coefficient models. A variable selection procedure is developed using basis function approximations and group nonconcave penalized functions, and the fixed effects are removed using the proper weight matrices. The proposed procedure simultaneously removes the fixed individual effects, selects the significant variables and estimates the nonzero coefficient functions. With appropriate selection of the tuning parameters, an asymptotic theory for the resulting estimates is established under suitable conditions. Simulation studies are carried out to assess the performance of our proposed method, and a real data set is analyzed for further illustration.
基金supported by the National Natural Science Foundation of China under Grant No.11101452the Natural Science Foundation Project of CQ CSTC under Grant No.2012jjA00035+2 种基金the National Basic Research Program of China under Grant No.2011CB808000the National Social Science Foundation of China under Grant No.12XTJ001the Natural Science Foundation Project of CTBU of China under Grant No.1352001
文摘This paper considers a semi-varying coefficient model for panel data with fixed effects,proposes the profile-likelihood-based estimators for the parametric and nonparametric components,and establishes convergence rates and asymptotic normality properties for both estimators.Simulation results show that the proposed estimators behave well in finite sample cases.
文摘What is sustainability? Does it only concern the environment or even socio-economic policies? It is only a question of ethics or a redefinition of industrial policy oriented towards the use of renewable energy, it can bring benefits both atmospheric and social employment. The need for the development of renewable sources can be in tune with the correct management of the territory in consideration of the fact that these sources involve the widespread implementation of small and medium-sized plants. A model of economic development based on renewable sources should respect the peculiarities and characteristics of the territories involved. It should also think of the territory as a “value” to be strengthened and used in a sustainable and integrated way and no longer as a passive platform on which to install plants. Solar thermal and photovoltaic, biomass, geothermal, hydrological, wind power are some of the sources the various countries must constantly invest. This publication is based on these concepts starting from an analysis of the employment data of the OECD “Organisation for Economic Co-operation and Development countries”, comparing them successively with the results of renewable energy productivity. The analysis was performed by analyzing a sample of 22 countries over a period of 20 years, after which the regression curve for the variables with the OLS method was created. This econometric method has allowed us to analyze the impact that renewable technologies have on the parameters of social welfare and in particular on unemployment.
基金Supported by the National Natural Science Foundation of China(71131008(Key Project)and 71271179)
文摘In this review, we highlight some recent methodological and theoretical develop- ments in estimation and testing of large panel data models with cross-sectional dependence. The paper begins with a discussion of issues of cross-sectional dependence, and introduces the concepts of weak and strong cross-sectional dependence. Then, the main attention is primarily paid to spatial and factor approaches for modeling cross-sectional dependence for both linear and nonlinear (nonparametric and semiparametric) panel data models. Finally, we conclude with some speculations on future research directions.
基金supported by the National Natural Science Foundation of China(71271088)Beijing Municipal Social Science Foundation(15JGB072)Humanity and Social Science Youth Foundation of Ministry of Education of China(15YJCZH122)
文摘This paper applies bootstrap methods to LM tests(including LM-lag test and LM-error test) for spatial dependence in panel data models with fixed effects, and removes fixed effects based on orthogonal transformation method proposed by Lee and Yu(2010). The consistencies of LM tests and their bootstrap versions are proved, and then some asymptotic refinements of bootstrap LM tests are obtained. It shows that the convergence rate of bootstrap LM tests is O((N T)-2) and that of fast double bootstrap LM tests is O((NT)-5/2). Extensive Monte Carlo experiments suggest that,compared to aysmptotic LM tests, the size of bootstrap LM tests gets closer to the nominal level of signifiance, and the power of bootstrap LM tests is higher, especially in the cases with small spatial correlation. Moreover, when the error is not normal or with heteroskedastic, asymptotic LM tests suffer from severe size distortion, but the size of bootstrap LM tests is close to the nominal significance level.Bootstrap LM tests are superior to aysmptotic LM tests in terms of size and power.
文摘Based on the panel data of 31 provinces and municipalities inChinafrom 1998 to 2016, this paper studies the effect of demographic structure on social security expenditure inChinaby using entity fixed effect regression model. The results show that there is a long-term co-integration relationship between population aging and social security expenditure in the demographic structure, and there is a positive correlation between population aging and social security expenditure. And the different cross-sectional effects in 31 regions of China reflect the difference between population aging and social security expenditure in different regions of China.
基金The authors appreciate the financial support from the Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China[13XNJ017].
文摘This paper combines energy demand modelling with stochastic frontier analysis to investigate the changing trends,variations and determinants of energy efficiency for 27 Chinese provinces over the period 1995 to 2014.An aggregate‘frontier’energy demand function and an efficiency function are estimated simultaneously.We obtained several findings.First,the energy intensity is not a particularly good indicator of energy efficiency.Second,the energy efficiency levels for all the provinces improved during the sample period,but the current efficiency levels are still low,implying great potential for energy saving.In addition,the energy efficiency gap among the provinces seems to have widened over the past 20 years,as the variance has increased by almost three times.Finally,technological progress driven by new investment and the development of market mechanisms are two important drivers of energy efficiency improvement.
文摘Today, Linear Mixed Models (LMMs) are fitted, mostly, by assuming that random effects and errors have Gaussian distributions, therefore using Maximum Likelihood (ML) or REML estimation. However, for many data sets, that double assumption is unlikely to hold, particularly for the random effects, a crucial component </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">in </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">which assessment of magnitude is key in such modeling. Alternative fitting methods not relying on that assumption (as ANOVA ones and Rao</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">’</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s MINQUE) apply, quite often, only to the very constrained class of variance components models. In this paper, a new computationally feasible estimation methodology is designed, first for the widely used class of 2-level (or longitudinal) LMMs with only assumption (beyond the usual basic ones) that residual errors are uncorrelated and homoscedastic, with no distributional assumption imposed on the random effects. A major asset of this new approach is that it yields nonnegative variance estimates and covariance matrices estimates which are symmetric and, at least, positive semi-definite. Furthermore, it is shown that when the LMM is, indeed, Gaussian, this new methodology differs from ML just through a slight variation in the denominator of the residual variance estimate. The new methodology actually generalizes to LMMs a well known nonparametric fitting procedure for standard Linear Models. Finally, the methodology is also extended to ANOVA LMMs, generalizing an old method by Henderson for ML estimation in such models under normality.
文摘Based on panel data such as 2009-2018 R&D expenditures,full-time equivalent of R&D personnel,Number of valid invention patents,and technology market turnover in China's Shanghai,Jiangsu,Zhejiang,and Anhui provinces(cities),using Griliches-Jaffe knowledge to produce Function,construct Time fixed effects model,conduct empirical research on the main factors affecting the technological innovation capability of the Yangtze River Delta,focusing on the relationship between the technological market and technological innovation capability.The results show that human capital and R&D expenditures have a significant and positive impact on the technological innovation capacity of the Yangtze River Delta.Although the technology market has a positive effect on the scientific and technological innovation capacity of the Yangtze River Delta,the effect is not significant.Propose countermeasures and suggestions to strengthen the influence of the technology market on technological innovation.