Panicle architecture is an agronomic determinant of crop yield and a target for cereal crop improvement.To investigate its molecular mechanisms in rice,we performed map-based cloning and characterization of OPEN PANIC...Panicle architecture is an agronomic determinant of crop yield and a target for cereal crop improvement.To investigate its molecular mechanisms in rice,we performed map-based cloning and characterization of OPEN PANICLE 1(OP1),a gain-of-function allele of LIGULELESS 1(LG1),controlling the spread-panicle phenotype.This allele results from a 48-bp deletion in the LG1 upstream region and promotes pulvinus development at the base of the primary branch.Increased OP1 expression and altered panicle phenotype in chimeric transgenic plants and upstream-region knockout mutants indicated that the deletion regulates spread-panicle architecture in the mutant spread panicle 1(sp1).Knocking out BRASSINOSTEROID UPREGULATED1(BU1)gene in the background of OP1 complementary plants resulted in compact panicles,suggesting OP1 may regulate inflorescence architecture via the brassinosteroid signaling pathway.We regard that manipulating the upstream regulatory region of OP1 or genes involved in BR signal pathway could be an efficient way to improve rice inflorescence architecture.展开更多
In recent years,some super hybrid rice varieties were bred with strong culms and large panicles,which are mainly contributed by the ipa1-2D locus.A gain-of-function allele of OsSPL14 is the ipa1-2D and it can greatly ...In recent years,some super hybrid rice varieties were bred with strong culms and large panicles,which are mainly contributed by the ipa1-2D locus.A gain-of-function allele of OsSPL14 is the ipa1-2D and it can greatly increase the panicle primary branch number.However,the key downstream genes mediating this trait variation are not fully explored.In this study,we developed high-quality near-isogenic lines(NILs)with a difference of only 30 kb chromosomal segment covering the ipa1-2D locus.Using the NILs,we explored the impact of ipa1-2D on five sequential stages of early inflorescence development,and found that the locus can greatly enhance the initiation of primary branch meristems.A transcriptomic analysis was performed to unveil the downstream molecular network of ipa1-2D,and 87 genes were found differentially expressed,many of which are involved in metabolism and catalysis processes.In addition,transgenic lines of overexpression and RNA interference were generated to shape different levels of OsSPL14.They were also used to validate the expression variation explored by transcriptome.Based on the gene annotation,twelve potential downstream targets of ipa1-2D were selected,and their expression variation was confirmed by qRT-PCR analysis both in NILs and transgenic lines.This research expands the molecular network underlying ipa1-2D and provides novel gene information which might be involved in the control of panicle branching.We discussed the potential function of identified genes and highlighted their values for future function exploration and breeding application.展开更多
Rice panicle apical abortion(PAA)is a detrimental agronomic trait resulting in spikelet number reduction and yield loss.To understand its underlying molecular mechanism,we identified one recessive PAA mutant tutou2 fr...Rice panicle apical abortion(PAA)is a detrimental agronomic trait resulting in spikelet number reduction and yield loss.To understand its underlying molecular mechanism,we identified one recessive PAA mutant tutou2 from the offspring of tissue cultures.The mutation locus was finely mapped to a 75-kb interval on the long arm of chromosome 10.Sequence analysis revealed a single nucleotide substitution of A to T at the 941 position of LOC_Os10g31910 in tutou2,resulting in an amino acid change from isoleucine to phenylalanine.Complementation analysis showed that the degenerated panicle phenotype in tutou2 was rescued in the transgenic lines.A phenotype similar to tutou2 can also be obtained by LOC_Os10g31910 knockout in wild-type rice.These results suggested that LOC_Os10 g31910 is the causative locus TUTOU2 responsible for the tutou2 PAA phenotype and probably also the locus of DEL1,previously documented as a leaf senescence gene.The significant phenotypic differences between del1 and tutou2 suggest that the locus DEL1/TUTOU2 plays roles in both leaf and panicle development which were not considered fully in previous studies.展开更多
A mutant of panicle differentiation in rice called non-panicle (nop) was discovered in the progeny of a cross between 93-11 and Nipponbare. The mutant exhibits normal plant morphology but has apparently few tillers....A mutant of panicle differentiation in rice called non-panicle (nop) was discovered in the progeny of a cross between 93-11 and Nipponbare. The mutant exhibits normal plant morphology but has apparently few tillers. The most striking change in nop is that its panicle differentiation is blocked, with masses of fluffy bract nodes generate from the positions where rachis branches normally develop in wild-type plants. Genetic analysis suggests that nop is controlled by a single recessive gene, which is temporarily named Nop(t). Based on its mutant phenotype, Nop(t) represents a key gene controlling the initiation of inflorescence differentiation, By using simple sequence repeat markers and sequence tagged site markers, Nop(t) gene was fine mapped in a 102-kb interval on the long arm of chromosome 6. These results will facilitate the positional cloning and functional studies of the gene.展开更多
The phenomenon of panicle enclosure in rice is mainly caused by the shortening of uppermost internode.Elucidating the molecular mechanism of panicle enclosure will be helpful for solving the problem of panicle enclosu...The phenomenon of panicle enclosure in rice is mainly caused by the shortening of uppermost internode.Elucidating the molecular mechanism of panicle enclosure will be helpful for solving the problem of panicle enclosure in male sterile lines and creating new germplasms in rice.We acquired a monogenic recessive enclosed panicle mutant,named as esp2 (enclosed shorter panicle 2),from the tissue culture progeny of indica rice cultivar Minghui-86.In the mutant,panicles were entirely enclosed by flag leaf sheaths and the uppermost internode was almost completely degenerated,but the other internodes did not have obvious changes in length.Genetic analysis indicated that the mutant phenotype was controlled by a recessive gene,which could be steadily inherited and was not affected by genetic background.Apparently,ESP2 is a key gene for the development of uppermost internode in rice.Using an F 2 population of a cross between esp2 and a japonica rice cultivar Xiushui-13 as well as SSR and InDel markers,we fine mapped ESP2 to a 14-kb region on the end of the short arm of chromosome 1.According to the rice genome sequence annotation,only one intact gene exists in this region,namely,a putative phosphatidylserine synthase gene.Sequencing analysis on the mutant and the wild type indicated that this gene was inserted by a 5287-bp retrotransposon sequence.Hence,we took this gene as a candidate of ESP2.The results of this study will facilitate the cloning and functional analysis of ESP2 gene.展开更多
A spontaneous white panicle mutant was found from the F6 progenies of an indica/japonica cross. The mu-tant exhibits white stripes on its basal leaves while the pani-cles, rachis and pedicel are milky white colored at...A spontaneous white panicle mutant was found from the F6 progenies of an indica/japonica cross. The mu-tant exhibits white stripes on its basal leaves while the pani-cles, rachis and pedicel are milky white colored at flowering stage. Genetic analysis in an F2 population from the cross of Zhi7/white panicle mutant indicates that the white panicle phenotype is controlled by a single recessive nuclear gene, tentatively termed as wp(t). Using microsatellite markers, the wp(t) gene was anchored between the markers of SSR101 and SSR63.9 with a map distance of 2.3 and 0.8 cM, respec-tively, and co-segregated with the marker of SSR17 on rice chromosome 1.展开更多
从粳稻中花11组培后代中发现了一个苗期白条纹,抽穗期白穗的突变体。该突变体表现为1叶期叶全白,2叶期从新叶叶尖开始沿叶脉逐渐转绿,至成株期完全变绿,抽穗后内外颖表现为白色,穗轴和小枝梗表现为绿色,成熟后颖壳转黄。根据基因定位结...从粳稻中花11组培后代中发现了一个苗期白条纹,抽穗期白穗的突变体。该突变体表现为1叶期叶全白,2叶期从新叶叶尖开始沿叶脉逐渐转绿,至成株期完全变绿,抽穗后内外颖表现为白色,穗轴和小枝梗表现为绿色,成熟后颖壳转黄。根据基因定位结果,将该突变体定名为wslwp(white striped leaf and white panicle)。与野生型相比,wslwp突变体2叶期及抽穗期叶片的叶绿素含量、类胡萝卜素含量及结实率均显著降低。遗传分析表明,该突变表型受1对隐性核基因控制,非T-DNA插入引起。为了克隆WSLWP基因,利用wslwp突变体与籼稻品种龙特甫B杂交获得的F2分离群体进行基因定位,首先将该基因定位于水稻第7染色体上的SSR标记RM5711与RM6574之间。随后,利用已有的SSR标记和开发的STS标记,进一步将该基因定位在STS7-63和STS7-65之间,物理距离约为87kb。展开更多
基金supported by the National Natural Science Foundation of China(31925029,31471457)the National Key Research and Development Project of China(2021YFD120010105)Guangdong Key Laboratory of New Technology in Rice Breeding(2020B1212060047)。
文摘Panicle architecture is an agronomic determinant of crop yield and a target for cereal crop improvement.To investigate its molecular mechanisms in rice,we performed map-based cloning and characterization of OPEN PANICLE 1(OP1),a gain-of-function allele of LIGULELESS 1(LG1),controlling the spread-panicle phenotype.This allele results from a 48-bp deletion in the LG1 upstream region and promotes pulvinus development at the base of the primary branch.Increased OP1 expression and altered panicle phenotype in chimeric transgenic plants and upstream-region knockout mutants indicated that the deletion regulates spread-panicle architecture in the mutant spread panicle 1(sp1).Knocking out BRASSINOSTEROID UPREGULATED1(BU1)gene in the background of OP1 complementary plants resulted in compact panicles,suggesting OP1 may regulate inflorescence architecture via the brassinosteroid signaling pathway.We regard that manipulating the upstream regulatory region of OP1 or genes involved in BR signal pathway could be an efficient way to improve rice inflorescence architecture.
基金This work was supported by grants from the National Natural Science Foundation of China(31600990,31871217 and 32072037)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(20KJA210002)+2 种基金Project of Special Funding for Crop Science Discipline Development(yzuxk202006)the open funds of the State Key Laboratory of Crop Genetics and Germplasm Enhancement(ZW202010)the Key Research and Development Program of Jiangsu Province(BE2018357).
文摘In recent years,some super hybrid rice varieties were bred with strong culms and large panicles,which are mainly contributed by the ipa1-2D locus.A gain-of-function allele of OsSPL14 is the ipa1-2D and it can greatly increase the panicle primary branch number.However,the key downstream genes mediating this trait variation are not fully explored.In this study,we developed high-quality near-isogenic lines(NILs)with a difference of only 30 kb chromosomal segment covering the ipa1-2D locus.Using the NILs,we explored the impact of ipa1-2D on five sequential stages of early inflorescence development,and found that the locus can greatly enhance the initiation of primary branch meristems.A transcriptomic analysis was performed to unveil the downstream molecular network of ipa1-2D,and 87 genes were found differentially expressed,many of which are involved in metabolism and catalysis processes.In addition,transgenic lines of overexpression and RNA interference were generated to shape different levels of OsSPL14.They were also used to validate the expression variation explored by transcriptome.Based on the gene annotation,twelve potential downstream targets of ipa1-2D were selected,and their expression variation was confirmed by qRT-PCR analysis both in NILs and transgenic lines.This research expands the molecular network underlying ipa1-2D and provides novel gene information which might be involved in the control of panicle branching.We discussed the potential function of identified genes and highlighted their values for future function exploration and breeding application.
基金supported by grants from the National Transgenic Science and Technology Program,China(2016ZX08009003-003)the National Key Research and Development Program of China(2016YFD0101100)+1 种基金the Youth Innovation Team Program of Chongqing Academy of Agricultural Sciences,China(NKY-2018QC03)the National Natural Science Foundation of China(31960401)。
文摘Rice panicle apical abortion(PAA)is a detrimental agronomic trait resulting in spikelet number reduction and yield loss.To understand its underlying molecular mechanism,we identified one recessive PAA mutant tutou2 from the offspring of tissue cultures.The mutation locus was finely mapped to a 75-kb interval on the long arm of chromosome 10.Sequence analysis revealed a single nucleotide substitution of A to T at the 941 position of LOC_Os10g31910 in tutou2,resulting in an amino acid change from isoleucine to phenylalanine.Complementation analysis showed that the degenerated panicle phenotype in tutou2 was rescued in the transgenic lines.A phenotype similar to tutou2 can also be obtained by LOC_Os10g31910 knockout in wild-type rice.These results suggested that LOC_Os10 g31910 is the causative locus TUTOU2 responsible for the tutou2 PAA phenotype and probably also the locus of DEL1,previously documented as a leaf senescence gene.The significant phenotypic differences between del1 and tutou2 suggest that the locus DEL1/TUTOU2 plays roles in both leaf and panicle development which were not considered fully in previous studies.
基金supported by the grants from the National Natural Science Foundation of China (Grant No.30300196 and No. 30771160)the State Key Basic Research Program of China (Grant No.2007CB10920203)the Research Program of Zhejiang Province,China
文摘A mutant of panicle differentiation in rice called non-panicle (nop) was discovered in the progeny of a cross between 93-11 and Nipponbare. The mutant exhibits normal plant morphology but has apparently few tillers. The most striking change in nop is that its panicle differentiation is blocked, with masses of fluffy bract nodes generate from the positions where rachis branches normally develop in wild-type plants. Genetic analysis suggests that nop is controlled by a single recessive gene, which is temporarily named Nop(t). Based on its mutant phenotype, Nop(t) represents a key gene controlling the initiation of inflorescence differentiation, By using simple sequence repeat markers and sequence tagged site markers, Nop(t) gene was fine mapped in a 102-kb interval on the long arm of chromosome 6. These results will facilitate the positional cloning and functional studies of the gene.
基金supported by the National Transgenic Projects of China (2009ZX08009-109B)Natural Science Foundation of Fujian Province (2010J01077)+1 种基金the National High Technology Research and Development Program of China (2006AA10Z128)New Century Excellent Talents in University of Fujian Province (KY0010057)
文摘The phenomenon of panicle enclosure in rice is mainly caused by the shortening of uppermost internode.Elucidating the molecular mechanism of panicle enclosure will be helpful for solving the problem of panicle enclosure in male sterile lines and creating new germplasms in rice.We acquired a monogenic recessive enclosed panicle mutant,named as esp2 (enclosed shorter panicle 2),from the tissue culture progeny of indica rice cultivar Minghui-86.In the mutant,panicles were entirely enclosed by flag leaf sheaths and the uppermost internode was almost completely degenerated,but the other internodes did not have obvious changes in length.Genetic analysis indicated that the mutant phenotype was controlled by a recessive gene,which could be steadily inherited and was not affected by genetic background.Apparently,ESP2 is a key gene for the development of uppermost internode in rice.Using an F 2 population of a cross between esp2 and a japonica rice cultivar Xiushui-13 as well as SSR and InDel markers,we fine mapped ESP2 to a 14-kb region on the end of the short arm of chromosome 1.According to the rice genome sequence annotation,only one intact gene exists in this region,namely,a putative phosphatidylserine synthase gene.Sequencing analysis on the mutant and the wild type indicated that this gene was inserted by a 5287-bp retrotransposon sequence.Hence,we took this gene as a candidate of ESP2.The results of this study will facilitate the cloning and functional analysis of ESP2 gene.
文摘A spontaneous white panicle mutant was found from the F6 progenies of an indica/japonica cross. The mu-tant exhibits white stripes on its basal leaves while the pani-cles, rachis and pedicel are milky white colored at flowering stage. Genetic analysis in an F2 population from the cross of Zhi7/white panicle mutant indicates that the white panicle phenotype is controlled by a single recessive nuclear gene, tentatively termed as wp(t). Using microsatellite markers, the wp(t) gene was anchored between the markers of SSR101 and SSR63.9 with a map distance of 2.3 and 0.8 cM, respec-tively, and co-segregated with the marker of SSR17 on rice chromosome 1.
文摘从粳稻中花11组培后代中发现了一个苗期白条纹,抽穗期白穗的突变体。该突变体表现为1叶期叶全白,2叶期从新叶叶尖开始沿叶脉逐渐转绿,至成株期完全变绿,抽穗后内外颖表现为白色,穗轴和小枝梗表现为绿色,成熟后颖壳转黄。根据基因定位结果,将该突变体定名为wslwp(white striped leaf and white panicle)。与野生型相比,wslwp突变体2叶期及抽穗期叶片的叶绿素含量、类胡萝卜素含量及结实率均显著降低。遗传分析表明,该突变表型受1对隐性核基因控制,非T-DNA插入引起。为了克隆WSLWP基因,利用wslwp突变体与籼稻品种龙特甫B杂交获得的F2分离群体进行基因定位,首先将该基因定位于水稻第7染色体上的SSR标记RM5711与RM6574之间。随后,利用已有的SSR标记和开发的STS标记,进一步将该基因定位在STS7-63和STS7-65之间,物理距离约为87kb。