期刊文献+
共找到1,160篇文章
< 1 2 58 >
每页显示 20 50 100
Wedge-shaped HfO_(2) buffer layer-induced field-free spin-orbit torque switching of HfO_(2)/Pt/Co structure 被引量:1
1
作者 陈建辉 梁梦凡 +4 位作者 宋衍 袁俊杰 张梦旸 骆泳铭 王宁宁 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期662-667,共6页
Field-free spin-orbit torque(SOT)switching of perpendicular magnetization is essential for future spintronic devices.This study demonstrates the field-free switching of perpendicular magnetization in an HfO_(2)/Pt/Co/... Field-free spin-orbit torque(SOT)switching of perpendicular magnetization is essential for future spintronic devices.This study demonstrates the field-free switching of perpendicular magnetization in an HfO_(2)/Pt/Co/TaO_(x) structure,which is facilitated by a wedge-shaped HfO_(2)buffer layer.The field-free switching ratio varies with HfO_(2)thickness,reaching optimal performance at 25 nm.This phenomenon is attributed to the lateral anisotropy gradient of the Co layer,which is induced by the wedge-shaped HfO_(2)buffer layer.The thickness gradient of HfO_(2)along the wedge creates a corresponding lateral anisotropy gradient in the Co layer,correlating with the switching ratio.These findings indicate that field-free SOT switching can be achieved through designing buffer layer,offering a novel approach to innovating spin-orbit device. 展开更多
关键词 spin-orbit torque field-free switching HfO_(2) buffer layer
下载PDF
Ionic buffer layer design for stabilizing Zn electrodes in aqueous Zn-based batteries
2
作者 Yifan Cui Yanyi Ma +4 位作者 Zhongxi Zhao Jianwen Yu Yongtang Chen Yi He Peng Tan 《Materials Reports(Energy)》 EI 2024年第4期20-30,I0001,共12页
Aqueous Zn-based batteries(AZBs)are hindered by issues associated with the Zn electrodeposition process(ZEDP)on electrode surfaces,including passivation,dendrite formation,and hydrogen evolution.One of the important r... Aqueous Zn-based batteries(AZBs)are hindered by issues associated with the Zn electrodeposition process(ZEDP)on electrode surfaces,including passivation,dendrite formation,and hydrogen evolution.One of the important reasons is the drastic fluctuation in the concentration of Zn^(2+)ions on the electrode surface during the charging and discharging process.In this work,an electrolyte with Zn^(2+)ion buffer layer(EZIBL)is proposed to regulate the ZEDP.First,numerical simulations and corresponding experiments are conducted to assess the impact of different thicknesses of the Zn^(2+)ion buffer layer(ZIBL)on the variation in Zn^(2+)ion concentration,from which the optimal thickness of the ZIBL is determined.Then,the regulation role of EZIBL in the cycling process is demonstrated by a Zn-Cu half cell.Further,combined with the potential profile of the symmetric cell and the experimental phenomena,the regulation role of EZIBL in ZEDP is systematically explained at the mechanistic level through the analysis of key parameters.Finally,a full battery composed of Zn-LiMn2O4 is assembled to evaluate the practical applicability of the EZIBL in real battery cycles,which shows great enhancement in capacity retention and coulombic efficiency.This work proposes the design of the EZIBL used to regulate the ZEDP and provides a simple,low-cost regulation method for the development of high-performance AZBs. 展开更多
关键词 Zn electrodeposition process Zn^(2+)ion buffer layer Potential profile Numerical modeling Optical observation
下载PDF
Numerical Study and Optimization of CZTS-Based Thin-Film Solar Cell Structure with Different Novel Buffer-Layer Materials Using SCAPS-1D Software
3
作者 Md. Zamil Sultan Arman Shahriar +4 位作者 Rony Tota Md. Nuralam Howlader Hasibul Haque Rodro Mahfuja Jannat Akhy Md. Abir Al Rashik 《Energy and Power Engineering》 2024年第4期179-195,共17页
This study explored the performances of CZTS-based thin-film solar cell with three novel buffer layer materials ZnS, CdS, and CdZnS, as well as with variation in thickness of buffer and absorber-layer, doping concentr... This study explored the performances of CZTS-based thin-film solar cell with three novel buffer layer materials ZnS, CdS, and CdZnS, as well as with variation in thickness of buffer and absorber-layer, doping concentrations of absorber-layer material and operating temperature. Our aims focused to identify the most optimal thin-film solar cell structure that offers high efficiency and lower toxicity which are desirable for sustainable and eco-friendly energy sources globally. SCAPS-1D, widely used software for modeling and simulating solar cells, has been used and solar cell fundamental performance parameters such as open-circuited voltage (), short-circuited current density (), fill-factor() and efficiency() have been optimized in this study. Based on our simulation results, it was found that CZTS solar cell with Cd<sub>0.4</sub>Zn<sub>0.6</sub>S as buffer-layer offers the most optimal combination of high efficiency and lower toxicity in comparison to other structure investigated in our study. Although the efficiency of Cd<sub>0.4</sub>Zn<sub>0.6</sub>S, ZnS and CdS are comparable, Cd<sub>0.4</sub>Zn<sub>0.6</sub>S is preferable to use as buffer-layer for its non-toxic property. In addition, evaluation of performance as a function of buffer-layer thickness for Cd<sub>0.4</sub>Zn<sub>0.6</sub>S, ZnS and CdS showed that optimum buffer-layer thickness for Cd<sub>0.4</sub>Zn<sub>0.6</sub>S was in the range from 50 to 150nm while ZnS offered only 50 – 75 nm. Furthermore, the temperature dependence performance parameters evaluation revealed that it is better to operate solar cell at temperature 290K for stable operation with optimum performances. This study would provide valuable insights into design and optimization of nanotechnology-based solar energy technology for minimizing global energy crisis and developing eco-friendly energy sources sustainable and simultaneously. 展开更多
关键词 Thin-Film Solar Cell CZTS buffer-layer Renewable Energy Green-House Gases Efficiency
下载PDF
Organic Photovoltaic Cells with Improved Performance Using Bathophenanthroline as a Buffer Layer 被引量:5
4
作者 王娜娜 于军胜 +1 位作者 林慧 蒋亚东 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第1期84-88,I0002,共6页
The role of bathophenanthroline (Bphen) as a buffer layer inserted between fullerene (C60) and Ag cathode in organic photovoltaic (OPV) cell was discussed. By introducing Bphen as a buffer layer with thicknes fr... The role of bathophenanthroline (Bphen) as a buffer layer inserted between fullerene (C60) and Ag cathode in organic photovoltaic (OPV) cell was discussed. By introducing Bphen as a buffer layer with thicknes from 0 to 2.5 nm, the power conversion efficiency of the OPV cell based on copper phthalocyanine (CuPc) and C60 was increased from 0.87% to 2.25% under AM 1.5 solar illumination at an intensity of 100 mW/cm^2, which was higher than that of bathocuproine used as a buffer layer. The photocurrent-voltage characteristics showed that Bphen effectively improves electron transport through C60 layer into Ag electrode and leads to balance charge carrier transport capability. The influence of Bphen thickness on OPV cells was also investigated. Furthermore, the absorption spectrum shows that an additional Bphen layer enhances the light harvest capability of CuPc/C60. 展开更多
关键词 Organic photovoltaic cell buffer layer Bathophenanthroline Charge carrier transport
下载PDF
Growth of CuI buffer layer prepared by spraying method
5
作者 阎有花 刘迎春 +3 位作者 方玲 卢志超 李正邦 周少雄 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第2期359-363,共5页
CuI thin films with nano-scale grains of about 35nm were deposited via spraying method with using acetonitrile as solvent. The influence of iodine doping concentration in acetonitrile solution on the structure, topogr... CuI thin films with nano-scale grains of about 35nm were deposited via spraying method with using acetonitrile as solvent. The influence of iodine doping concentration in acetonitrile solution on the structure, topographic and optical properties of CuI thin films was investigated. X-ray diffraction results showed that CuI iodine-doped films doped CuI:I2 were in γ-phase of zinc blende structure with (111) preferential plane. Scanning electron microscopy revealed that the microstructure of CuI films depended on the relative amount of doping iodine in the solution. When the iodine doping amount in acetonitrile solution was 0.025 g, the film was uniform and compact, the optical transmittance was 75.4% in the part of visible region and the energy band gap was close to 2.96 eV. 展开更多
关键词 CuI thin film buffer layer spraying method iodine doping
下载PDF
有机电致发光器件的Buffer Layer及其金属掺杂 被引量:1
6
作者 李文连 《液晶与显示》 CAS CSCD 1999年第4期289-295,共7页
描述了电极与有机层之间的薄层(0.1~lnm)BufferLayer(缓冲层,特别是LiF)对OEL器件性能,特别是亮度和效率的提高及其增强机制,评述厂复合物电极及金属掺杂有机物层对OEL器件亮度和效率的增强现象。
关键词 有机电致发光 缓冲层 金属掺杂
下载PDF
Improved performance of polymer solar cells by using inorganic, organic, and doped cathode buffer layers 被引量:4
7
作者 王桃红 陈长博 +3 位作者 郭坤平 陈果 徐韬 魏斌 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第3期428-433,共6页
The interface between the active layer and the electrode is one of the most critical factors that could affect the device performance of polymer solar cells. In this work, based on the typical poly(3-hexylthiophene)... The interface between the active layer and the electrode is one of the most critical factors that could affect the device performance of polymer solar cells. In this work, based on the typical poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) polymer solar cell, we studied the effect of the cathode buffer layer (CBL) between the top metal electrode and the active layer on the device performance. Several inorganic and organic materials commonly used as the electron injection layer in an organic light-emitting diode (OLED) were employed as the CBL in the P3HT:PCBM polymer solar cells. Our results demonstrate that the inorganic and organic materials like Cs2CO3, bathophenanthroline (Bphen), and 8-hydroxyquinolatolithium (Liq) can be used as CBL to efficiently improve the device performance of the P3HT:PCBM polymer solar cells. The P3HT:PCBM devices employed various CBLs possess power conversion efficiencies (PCEs) of 3.0%-3.3%, which are ca. 50% improved compared to that of the device without CBL. Furthermore, by using the doped organic materials Bphen:Cs2CO3 and Bphen:Liq as the CBL, the PCE of the P3HT:PCBM device will be further improved to 3.5%, which is ca. 70% higher than that of the device without a CBL and ca. 10% increased compared with that of the devices with a neat inorganic or organic CBL. 展开更多
关键词 polymer solar cell INTERFACE cathode buffer layer MORPHOLOGY
下载PDF
Significant Enhancement in Built-in Potential and Charge Carrier Collection of Organic Solar Cells using 4-(5-hexylthiophene-2-yl)-2,6-bis(5- trifluoromethyl)thiophen-2-yl)pyridine as a Cathode Buffer Layer
8
作者 臧月 曹康丽 +2 位作者 黄江 张清 于军胜 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第5期593-599,I0004,共8页
An electron transporting material of TFTTP (4-(5-hexylthiophene-2-yl)-2,6-bis(5-trifluoromethyl)thiophen-2-yl)pyridine) was investigated as a cathode buffer layer to enhance the power efficiency of organic sola... An electron transporting material of TFTTP (4-(5-hexylthiophene-2-yl)-2,6-bis(5-trifluoromethyl)thiophen-2-yl)pyridine) was investigated as a cathode buffer layer to enhance the power efficiency of organic solar cells (OSCs) based on subphthalocyanine and C60. The overall power conversion efficiency was increased by a factor of 1.31 by inserting the TFTTP interfacial layer between the active layer and metallic cathode. The inner mechanism responsible for the performance enhancement of OSCs was systematically studied with the simulation of dark diode behavior and optical field distribution inside the devices as well as the characterization of device photocurrent. The results showed that the TFTTP layer could significantly increase the built-in potential in the devices, leading to the enhanced dissociation of charge transfer excitons. In addition, by using TFTTP as the buffer layer, a better Ohmic contact at C60/metal interface was formed, facilitating more efficient free charge carrier collection. 展开更多
关键词 Organic solar cells Cathode buffer layer Built-in potential Charge carrier collection Optical spacer effect
下载PDF
Preparation and characterization of Cd_(1-x)Zn_xS buffer layers for thin film solar cells 被引量:3
9
作者 Tian-Wei Zhang Cheng-Jun Zhu +1 位作者 Chao-Zheng Wang Jian Li 《Rare Metals》 SCIE EI CAS CSCD 2013年第1期47-51,共5页
Cd1_xZnxS (x = 0, 0.1, 0.2, 0.3, 1.0) thin films have been grown successfully on soda-lime glass substrates by chemical bath deposition technique as a very promising buffer layer material for optoelectronic device a... Cd1_xZnxS (x = 0, 0.1, 0.2, 0.3, 1.0) thin films have been grown successfully on soda-lime glass substrates by chemical bath deposition technique as a very promising buffer layer material for optoelectronic device applications. The composition, structural properties, surface morphol- ogy, and optical properties of Cd~_xZnxS thin films were characterized by energy dispersive analysis of X-ray tech- nique (EDAX), X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-Vis spectrophotometer tech- niques, respectively. The annealed films were observed to possess the deficient sulfur composition. The results of XRD show that the Cdl_xZnxS (x = 0. l) thin film annealed at 450 ~C forms hexagonal (wurtzite) structure with lattice parameters a = 0.408814 nm, c : 0.666059 nm, and its average grain size is 24.9902 nm. The diffraction peaks become strong with the increasing annealing temperatures. The surface of Cdl_~ZnxS (x = 0.1) thin film annealed at 450 ~C is uninterrupted and homogenous as compared to other temperatures. From optical properties, it is observed that the presence of small amount of Zn results in marked changes in the optical band gap of CdS. The band gaps of the Cdl_xZnxS thin films vary from 2.42 to 3.51 eV as composition varies from x = 0.0 to 1.0. 展开更多
关键词 Solar cells buffer layers ChemicalCdl_xZnxS thin films bath deposition
下载PDF
Fabricating Buffer Layers for YBa_2Cu_3O_y Coated Conductor by Surface Oxidation Epitaxy 被引量:2
10
作者 杨坚 刘慧舟 +2 位作者 古宏伟 屈飞 范红雁 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第4期514-516,共3页
NiO buffer layers were formed on a tape of Ni for making YBCO coated conductor by surface-oxidation epitaxy (SOE) process. Different oxidizing conditions such as temperature and duration were studied for Ni tapes. I... NiO buffer layers were formed on a tape of Ni for making YBCO coated conductor by surface-oxidation epitaxy (SOE) process. Different oxidizing conditions such as temperature and duration were studied for Ni tapes. It is found that the texture of NiO could be affected directly by the orientation and surface of substrate. X-ray diffraction (XRD) 2-2θ scan, φ-scan, and pole figure were employed to characterize the in-plane alignment and cube texture. X-ray φ-scan shows that NiO film is formed on Ni tape with high cube texture and a typical value at the full width at half maximum (FWHM) is ≤ 7.5°. Scanning electron microscopy was used to study the surface morphology of NiO films. No crack is found and the films appear dense. Such technique is simple and of low cost with perfect reproducibility, promising for developing long tapes. 展开更多
关键词 metal material cube texture surface-oxidation epitaxy NiO buffer layer rare earths
下载PDF
Influence of double AlN buffer layers on the qualities of GaN films prepared by metal-organic chemical vapour deposition 被引量:2
11
作者 林志宇 张进成 +7 位作者 周昊 李小刚 孟凡娜 张琳霞 艾姗 许晟瑞 赵一 郝跃 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期403-407,共5页
In this paper we report that the GaN thin film is grown by metal-organic chemical vapour deposition on a sapphire (0001) substrate with double A1N buffer layers. The buffer layer consists of a low-temperature (LT)... In this paper we report that the GaN thin film is grown by metal-organic chemical vapour deposition on a sapphire (0001) substrate with double A1N buffer layers. The buffer layer consists of a low-temperature (LT) A1N layer and a high-temperature (HT) A1N layer that are grown at 600 ℃ and 1000 ℃, respectively. It is observed that the thickness of the LT-A1N layer drastically influences the quality of GaN thin film, and that the optimized 4.25-min-LT-A1N layer minimizes the dislocation density of GaN thin film. The reason for the improved properties is discussed in this paper. 展开更多
关键词 GAN A1N buffer layer metal-organic chemical vapour deposition threading dislocations
下载PDF
Pulsed Laser Deposition ZnS Buffer Layers for CIGS Solar Cells 被引量:4
12
作者 Pai-feng Luo Guo-shun Jiang Chang-fei Zhu 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2009年第1期97-101,共5页
Polycrystalline ZnS films were prepared by pulsed laser deposition (PLD) on quartz glass substrates under different growth conditions at different substrate temperatures of 20, 200, 400, and 600 ℃, which is a suita... Polycrystalline ZnS films were prepared by pulsed laser deposition (PLD) on quartz glass substrates under different growth conditions at different substrate temperatures of 20, 200, 400, and 600 ℃, which is a suitable alternative to chemical bath deposited (CBD) CdS as a buffer layer in Cu(In,Ga)Se2 (CIGS) solar cells. X-ray diffraction studies indicate the films are polycrystalline with zinc-blende structure and they exhibit preferential orientation along the cubic phase β-ZnS (111) direction, which conflicts with the conclusion of wurtzite structure by Murali that the ZnS films deposited by pulse plating technique was polycrystalline with wurtzite structure. The Raman spectra of grown films show Al mode at approximately 350 cm^-1, generally observed in the cubic phase β-ZnS compounds. The planar and the cross-sectional morphology were observed by scanning electron microscopic. The dense, smooth, uniform grains are formed on the quartz glass substrates through PLD technique. The grain size of ZnS deposited by PLD is much smaller than that of CdS by conventional CBD method, which is analyzed as the main reason of detrimental cell performance. The composition of the ZnS films was also measured by X-ray fluorescence. The typical ZnS films obtained in this work are near stoichiometric and only a small amount of S-rich. The energy band gaps at different temperatures were obtained by absorption spectroscopy measurement, which increases from 3.2 eV to 3.7 eV with the increasing of the deposition temperature. ZnS has a wider energy band gap than CdS (2.4 eV), which can enhance the blue response of the photovoltaic cells. These results show the high-quality of these substitute buffer layer materials are prepared through an all-dry technology, which can be used in the manufacture of CIGS thin film solar cells. 展开更多
关键词 ZnS thin films Pulsed laser deposition Chemical bath deposition buffer layer
下载PDF
Performance improvement of MEH-PPV:PCBM solar cells using bathocuproine and bathophenanthroline as the buffer layers 被引量:1
13
作者 刘晓东 赵谡玲 +7 位作者 徐征 张福俊 张天慧 龚伟 闫光 孔超 王永生 徐叙瑢 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第6期540-545,共6页
In this work, bathocuproine (BCP) and bathophenanthroline (Bphen), commonly used in small-molecule organic solar cells (OSCs), are adopted as the buffer layers to improve the performance of the polymer solar cel... In this work, bathocuproine (BCP) and bathophenanthroline (Bphen), commonly used in small-molecule organic solar cells (OSCs), are adopted as the buffer layers to improve the performance of the polymer solar cells (PSCs) based on poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV): [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) bulk heterojunction. By inserting BCP or Bphen between the active layer and the top cathode, all the performance parameters are dramatically improved. The power conversion efficiency is increased by about 70% and 120% with 5-am BCP and 12-nm Bphen layers, respectively, when compared with that of the devices without any buffer layer. The performance enhancement is attributed to BCP or Bphen (i) increasing the optical field, and hence the absorption in the active layer, (ii) effectively blocking the excitons generated in MEH-PPV from quenching at organic/aluminum (Al) interface due to the large band-gap of BCP or Bphen, which results in a significant reduction in series resistance (Rs), and (iii) preventing damage to the active layer during the metal deposition. Compared with the traditional device using LiF as the buffer layer, the BCP-based devices show a comparable efficiency, while the Bphen-based devices show a much larger efficiency. This is due to the higher electron mobility in Bphen than that in BCP, which facilitates the electron transport and extraction through the buffer layer to the cathode. 展开更多
关键词 polymer solar cells BATHOCUPROINE bathophenanthroline buffer layer
下载PDF
Effect of double AlN buffer layer on the qualities of GaN films grown by radio-frequency molecular beam epitaxy 被引量:1
14
作者 李新化 钟飞 +2 位作者 邱凯 尹志军 姬长建 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第4期1360-1363,共4页
This paper reports that the GaN thin films with Ga-polarity and high quality were grown by radio-frequency molecular beam epitaxy on sapphire (0001) substrate with a double A1N buffer layer. The buffer layer consist... This paper reports that the GaN thin films with Ga-polarity and high quality were grown by radio-frequency molecular beam epitaxy on sapphire (0001) substrate with a double A1N buffer layer. The buffer layer consists of a high-temperature (HT) A1N layer and a low-temperature (LT) A1N layer grown at 800℃ and 600℃, respectively. It is demonstrated that the HT-A1N layer can result in the growth of GaN epilayer in Ga-polarity and the LT-A1N layer is helpful for the improvement of the epilayer quality. It is observed that the carrier mobility of the GaN epilayer increases from 458 to 858cm^2/V.s at room temperature when the thickness of LT-A1N layer varies from 0 to 20nm. The full width at half maximum of x-ray rocking curves also demonstrates a substantial improvement in the quality of GaN epilavers by the utilization of LT-A1N layer. 展开更多
关键词 Gallium Nitride buffer layer carrier mobility polarity
下载PDF
Effects of Homo-buffer Layer on Properties of Sputter-deposited ZnO Films 被引量:1
15
作者 Jian Huang Linjun Wang Run Xu Weimin Shi Yiben Xia 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第5期691-694,共4页
Two-step growth regimes were applied to realize a homoepitaxial growth of ZnO films on freestanding diamond substrates by radio-frequency (RF) reactive magnetron sputtering method. ZnO buffer layers were deposited o... Two-step growth regimes were applied to realize a homoepitaxial growth of ZnO films on freestanding diamond substrates by radio-frequency (RF) reactive magnetron sputtering method. ZnO buffer layers were deposited on freestanding diamond substrates at a low sputtering power of 50 W, and then ZnO main layers were prepared on this buffer layer at a high sputtering power of 150 W. For comparison, a sample was also deposited directly on freestanding diamond substrate at a power of 150 W. The effects of ZnO buffer layers on the structural, optical, electrical and morphological properties of the ZnO main layer were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, semiconductor characterization system and atomic force microscopy (AFM) respectively. The experimental results suggested that homo-buffer layer was helpful to improve the crystalline quality of ZnO/diamond heteroepitaxial films. 展开更多
关键词 Freestanding diamond ZnO film buffer layer Magnetron sputtering
下载PDF
Effects of ZnO Buffer Layer Thickness on Properties of Mg_xZn_(1-x)O Thin Films Deposited by MOCVD 被引量:1
16
作者 DONG Xin LIU Da-li +4 位作者 DU Guo-tong ZHANG Yuan-tao ZHU Hui-chao YAN Xiao-long GAO Zhong-min 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2005年第5期583-586,共4页
High-quality MgxZn1-xO thin films were grown on sapphire(0001 ) substrates with a ZnO buffer layer of different thicknesses by means of metal-organic chemical vapor deposition. Diethyl zinc, bis-cyclopentadienyl-Mg ... High-quality MgxZn1-xO thin films were grown on sapphire(0001 ) substrates with a ZnO buffer layer of different thicknesses by means of metal-organic chemical vapor deposition. Diethyl zinc, bis-cyclopentadienyl-Mg and oxygen were used as the precursor materials. The crystalline quality, surface morphologies and optical properties of the Mg, Zn1-xO films were investigated by X-ray diffraction, atomic force microscopy and photoluminescence spectrometry. It was shown that the quality of the MgxZn1-xO thin films depends on the thickness of the ZnO buffer layer and an Mg, Zn1-xO thin film with a ZnO buffer layer whose thickness was 20 nm exhibited the best crystal-quality, optical properties and a flat and dense surface. 展开更多
关键词 MGXZN1-XO ZnO buffer layer Sapphire substrate MOCVD AFM
下载PDF
Effect of Al_2O_3 Buffer Layers on the Properties of Sputtered VO_2 Thin Films 被引量:1
17
作者 Dainan Zhang Tianlong Wen +2 位作者 Ying Xiong Donghong Qiu Qiye Wen 《Nano-Micro Letters》 SCIE EI CAS 2017年第3期52-59,共8页
VO_2 thin films were grown on silicon substrates using Al_2O_3 thin films as the buffer layers. Compared with direct deposition on silicon, VO_2 thin films deposited on Al_2O_3 buffer layers experience a significant i... VO_2 thin films were grown on silicon substrates using Al_2O_3 thin films as the buffer layers. Compared with direct deposition on silicon, VO_2 thin films deposited on Al_2O_3 buffer layers experience a significant improvement in their microstructures and physical properties. By optimizing the growth conditions, the resistance of VO_2 thin films can change by four orders of magnitude with a reduced thermal hysteresis of 4 °C at the phase transition temperature. The electrically driven phase transformation was measured in Pt/Si/Al_2O_3/VO_2/Au heterostructures. The introduction of a buffer layer reduces the leakage current and Joule heating during electrically driven phase transitions. The C–V measurement result indicates that the phase transformation of VO_2 thin films can be induced by an electrical field. 展开更多
关键词 AL2O3 buffer layers Atomic layer deposition VO2 thin films HETEROSTRUCTURE
下载PDF
Elastic Buffering Layer on CuS Enabling High-Rate and Long-Life Sodium-Ion Storage 被引量:2
18
作者 Yuanhua Xiao Feng Yue +7 位作者 Ziqing Wen Ya Shen Dangcheng Su Huazhang Guo Xianhong Rui Liming Zhou Shaoming Fang Yan Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期27-39,共13页
The latest view suggests the inactive core,surface pulverization,and poly sulfide shuttling effect of metal sulfides are responsible for their low capacity and poor cycling performance in sodium-ion batteries(SIBs).Wh... The latest view suggests the inactive core,surface pulverization,and poly sulfide shuttling effect of metal sulfides are responsible for their low capacity and poor cycling performance in sodium-ion batteries(SIBs).Whereas overcoming the above problems based on conventional nanoengineering is not efficient enough.In this work,erythrocyte-like CuS microspheres with an elastic buffering layer of ultrathin poly aniline(PANI) were synthesized through one-step selfassembly growth,followed by in situ polymerization of aniline.When CuS@PANI is used as anode electrode in SIBs,it delivers high capacity,ultrahigh rate capability(500 mAh gat 0.1 A g,and 214.5 mAh gat 40 A g),and superior cycling life of over 7500 cycles at 20 A g.A series of in/ex situ characterization techniques were applied to investigate the structural evolution and sodium-ion storage mechanism.The PANI swollen with electrolyte can stabilize solid electrolyte interface layer,benefit the ion transport/charge transfer at the PANI/electrolyte interface,and restrain the size growth of Cu particles in confined space.Moreover,finite element analyses and density functional simulations confirm that the PANI film effectively buffers the volume expansion,suppresses the surface pulverization,and traps the poly sulfide. 展开更多
关键词 CUS Elastic buffering layer POLYANILINE Long life Sodium-ion batteries
下载PDF
UV-ozone-treated MoO_3 as the hole-collecting buffer layer for high-efficiency solution-processed SQ:PC_(71) BM photovoltaic devices 被引量:1
19
作者 杨倩倩 杨道宾 +7 位作者 赵谡玲 黄艳 徐征 龚伟 樊星 刘志方 黄清雨 徐叙瑢 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期608-612,共5页
The enhanced performance of a squaraine compound, with 2,4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl] squaraine as the donor and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor, in soluti... The enhanced performance of a squaraine compound, with 2,4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl] squaraine as the donor and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor, in solution-processed or- ganic photovoltaic devices is obtained by using UV-ozone-treated MoO3 as the hole-collecting buffer layer. The optimized thickness of the MoO3 layer is 8 nm, at which the device shows the best power conversion efficiency (PCE) among all devices, resulting from a balance of optical absorption and charge transport. After being treated by UV-ozone for 10 min, the transmittance of the MoO3 film is almost unchanged. Atomic force microscopy results show that the treated surface morphology is improved. A high PCE of 3.99% under AM 1.5 G illumination (100 mW/cm2) is obtained. 展开更多
关键词 organic photovoltaic devices hole-collecting buffer layer MOO3 UV-ozone
下载PDF
Tin dioxide buffer layer-assisted efficiency and stability of wide-bandgap inverted perovskite solar cells 被引量:2
20
作者 Bingbing Chen Pengyang Wang +3 位作者 Ningyu Ren Renjie Li Ying Zhao Xiaodan Zhang 《Journal of Semiconductors》 EI CAS CSCD 2022年第5期89-103,共15页
Inverted perovskite solar cells(IPSCs) have attracted tremendous research interest in recent years due to their applications in perovskite/silicon tandem solar cells. However, further performance improvements and long... Inverted perovskite solar cells(IPSCs) have attracted tremendous research interest in recent years due to their applications in perovskite/silicon tandem solar cells. However, further performance improvements and long-term stability issues are the main obstacles that deeply hinder the development of devices. Herein, we demonstrate a facile atomic layer deposition(ALD) processed tin dioxide(SnO2) as an additional buffer layer for efficient and stable wide-bandgap IPSCs. The additional buffer layer increases the shunt resistance and reduces the reverse current saturation density, resulting in the enhancement of efficiency from 19.23% to 21.13%. The target device with a bandgap of 1.63 eV obtains open-circuit voltage of 1.19 V, short circuit current density of 21.86 mA/cm^(2), and fill factor of 81.07%. More importantly, the compact and stable SnO_(2) film invests the IPSCs with superhydrophobicity, thus significantly enhancing the moisture resistance. Eventually, the target device can maintain 90% of its initial efficiency after 600 h storage in ambient conditions with relative humidity of 20%–40% without encapsulation. The ALD-processed SnO_(2) provides a promising way to boost the efficiency and stability of IPSCs, and a great potential for perovskite-based tandem solar cells in the near future. 展开更多
关键词 atomic layer deposition tin dioxide additional buffer layer efficiency and stability inverted perovskite solar cells
下载PDF
上一页 1 2 58 下一页 到第
使用帮助 返回顶部