In this paper,we study the initial-boundary value problem for a class of singular parabolic equations.Under some conditions,we obtain the existence and asymptotic behavior of solutions to the problem by parabolic regu...In this paper,we study the initial-boundary value problem for a class of singular parabolic equations.Under some conditions,we obtain the existence and asymptotic behavior of solutions to the problem by parabolic regularization method and the sub-super solutions method.As a byproduct,we prove the existence of solutions to some problems with gradient terms,which blow up on the boundary.展开更多
In this article,we investigate the longtime behavior for the following nonautonomous nonclassical parabolic equations on unbounded domain ut−∆ut−∆u+λu=f(x,u(x,t−ρ(t)))+g(x,t).Under some suitable conditions on the d...In this article,we investigate the longtime behavior for the following nonautonomous nonclassical parabolic equations on unbounded domain ut−∆ut−∆u+λu=f(x,u(x,t−ρ(t)))+g(x,t).Under some suitable conditions on the delay term f and the non-autonomous forcing term g,we prove the existence of uniform attractors in Banach space CH1(RN)for the multivalued process generated by non-autonomous nonclassical parabolic equations with delays in unbounded domain.展开更多
In this paper we study the decay estimate of global solutions to the initial-boundary value problem for double degenerate nonlinear parabolic equation by using a dif-ference inequality.
This paper deals with a homogeneous Neumann initial-boundary problem of a 4th-order parabolic equation modeling epitaxial growth of thin film. We determine the classification of initial energy on the existence of blow...This paper deals with a homogeneous Neumann initial-boundary problem of a 4th-order parabolic equation modeling epitaxial growth of thin film. We determine the classification of initial energy on the existence of blow-up, global existence and extinction of solutions by using the potential well method and the auxiliary function method.Moreover, asymptotic estimates on global solution and extinction solution are studied,respectively.展开更多
In this paper, we consider the continuous parabolic Anderson model with a logcorrelated Gaussian field, and obtain the precise quenched long-time asymptotics and spatial asymptotics. To overcome the difficulties arisi...In this paper, we consider the continuous parabolic Anderson model with a logcorrelated Gaussian field, and obtain the precise quenched long-time asymptotics and spatial asymptotics. To overcome the difficulties arising from the log-correlated Gaussian field in the proof of the lower bound of the spatial asymptotics, we first establish the relation between quenched long-time asymptotics and spatial asymptotics, and then get the lower bound of the spatial asymptotics through the lower bound of the quenched long-time asymptotics.展开更多
By considering higher-order effects, the properties of self-similar parabolic pulses propagating in the microstructured fibre amplifier with a normal group-velocity dispersion have been investigated. The numerical res...By considering higher-order effects, the properties of self-similar parabolic pulses propagating in the microstructured fibre amplifier with a normal group-velocity dispersion have been investigated. The numerical results indicate that the higher-order effects can badly distort self-similar parabolic pulse shape and optical spectrum, and at the same time the peak shift and oscillation appear, while the pulse still reveals highly linear chirp but grows into asymmetry. The influence of different higher-order effects on self-similar parabolic pulse propagation has been analysed. It shows that the self-steepening plays a more important role. We can manipulate the geometrical parameters of the microstructured fibre amplifier to gain a suitable dispersion and nonlinearity coefficient which will keep high-quality self-similar parabolic pulse propagation. These results are significant for the further study of self-similar parabolic pulse propagation.展开更多
A highly efficient H1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation ...A highly efficient H1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation and asymptotic expansions are studied. Then, the superconvergence of order O(h^2) for both the original variable u in H1 (Ω) norm and the flux p = u in H(div, Ω) norm is derived through the interpolation post processing technique. Furthermore, with the help of the asymptotic expansions and a suitable auxiliary problem, the extrapolation solutions with accuracy O(h^3) are obtained for the above two variables. Finally, some numerical results are provided to confirm validity of the theoretical analysis and excellent performance of the proposed method.展开更多
Aict f Finjte rmvedrig wave (M) so1uhons fOr the fOllowhg sechear syttem (I){u_t-u_(xx)+u^mv^p=0 u_t-v_(xx)+u^q=0 -∞<x<+∞,t>0,p,q>0,m≥0 are studied. SolutiOns to (I) of the fOrm u (x, t)=lt(ct--x), v(...Aict f Finjte rmvedrig wave (M) so1uhons fOr the fOllowhg sechear syttem (I){u_t-u_(xx)+u^mv^p=0 u_t-v_(xx)+u^q=0 -∞<x<+∞,t>0,p,q>0,m≥0 are studied. SolutiOns to (I) of the fOrm u (x, t)=lt(ct--x), v(x, t)=v (cl--X) are called W soIutiOns if there exjstS a fwite ', such that u({)=v(j)=0 for t<{,':=ct--x. It is proVed that if Pq+nl<l, fOr any ed c thele erktS an FTW that is inhque up to phase transIahons and Is unbOunded, whena no rm ekist if pq+m> l. The asmpptohc weve profileS near the front as well as far from it are also determined. If I)q^m = l. the exjstence of travebe wave soluhons to (I) is proved. The plnof in Esqniruis's paper(1990) for the one m=0 co be sdriplified by using the methOd develOped in thjs paper.展开更多
This paper is concerned with the existence and uniqueness of nonnegative classical solutions to the initial-boundary value problems for the pseudo-parabolic equation with strongly nonlinear sources. Furthermore, we di...This paper is concerned with the existence and uniqueness of nonnegative classical solutions to the initial-boundary value problems for the pseudo-parabolic equation with strongly nonlinear sources. Furthermore, we discuss the asymptotic behavior of solutions as the viscosity coefficient k tends to zero.展开更多
A class of nonlinear singularly perturbed problem of ultra parabolic equations are considered. Using the comparison theorem, the existence, uniqueness and its asymptotic behavior of solution for the problem are studied.
In this article, we prove that viscosity solutions of the parabolic inhomogeneous equationsn+p/put-△p^Nu=f(x,t)can be characterized using asymptotic mean value properties for all p ≥ 1, including p = 1 and p = ∞...In this article, we prove that viscosity solutions of the parabolic inhomogeneous equationsn+p/put-△p^Nu=f(x,t)can be characterized using asymptotic mean value properties for all p ≥ 1, including p = 1 and p = ∞. We also obtain a comparison principle for the non-negative or non-positive inhomogeneous term f for the corresponding initial-boundary value problem and this in turn implies the uniqueness of solutions to such a problem.展开更多
This paper proves the asymptotic behaviour for a class of reaction-diffusionsystem in bacteriology by using duality technique, semigroup theorem, Lp--estimates andupper and lower solutions method.
We study the approximation of variational inequality related to American options problem. A simple proof to asymptotic behavior is also given using the theta time scheme combined with a finite element spatial approxim...We study the approximation of variational inequality related to American options problem. A simple proof to asymptotic behavior is also given using the theta time scheme combined with a finite element spatial approximation in uniform norm, which enables us to locate free boundary in practice.展开更多
We give a brief introduction to results on the asymptotics of quantization errors. The topics discussed include the quantization dimension,asymptotic distributions of sets of prototypes,asymptotically optimal quantiza...We give a brief introduction to results on the asymptotics of quantization errors. The topics discussed include the quantization dimension,asymptotic distributions of sets of prototypes,asymptotically optimal quantizations,approximations and random quantizations.展开更多
In this article,we study the initial boundary value problem of coupled semi-linear degenerate parabolic equations with a singular potential term on manifolds with corner singularities.Firstly,we introduce the corner t...In this article,we study the initial boundary value problem of coupled semi-linear degenerate parabolic equations with a singular potential term on manifolds with corner singularities.Firstly,we introduce the corner type weighted p-Sobolev spaces and the weighted corner type Sobolev inequality,the Poincare′inequality,and the Hardy inequality.Then,by using the potential well method and the inequality mentioned above,we obtain an existence theorem of global solutions with exponential decay and show the blow-up in finite time of solutions for both cases with low initial energy and critical initial energy.Significantly,the relation between the above two phenomena is derived as a sharp condition.Moreover,we show that the global existence also holds for the case of a potential well family.展开更多
In this paper the nonlinear reaction diffusion problems with ultraparabolic equations are considered. By using comparison theorem, the existence, uniqueness and asymptotic behavior of solution for the problem are stud...In this paper the nonlinear reaction diffusion problems with ultraparabolic equations are considered. By using comparison theorem, the existence, uniqueness and asymptotic behavior of solution for the problem are studied.展开更多
In this paper,the existence,the uniqueness,the asymptotic behavior and the non-existence of the global generalized solutions of the initial boundary value problems for the non-linear pseudo-parabolic equation ut-αuxx...In this paper,the existence,the uniqueness,the asymptotic behavior and the non-existence of the global generalized solutions of the initial boundary value problems for the non-linear pseudo-parabolic equation ut-αuxx-βuxxt=F(u)-βF (u)xx are proved,where α,β 0 are constants,F(s) is a given function.展开更多
In this paper, we study the higher-order semilinear parabolic system{ut+(-△)^mu=a|v|^p-1v,(t,x)∈R^1+×R^N,vt+(-△)^mv=b|u|^q-1u,(t,x)∈R^1+×R^N,u(0,x)=φ(x),v(0,x)=ψ(x),x∈R^N, wher...In this paper, we study the higher-order semilinear parabolic system{ut+(-△)^mu=a|v|^p-1v,(t,x)∈R^1+×R^N,vt+(-△)^mv=b|u|^q-1u,(t,x)∈R^1+×R^N,u(0,x)=φ(x),v(0,x)=ψ(x),x∈R^N, where m, p,q 〉 1, a,b ∈R. We prove that the global existence of mild solutions for small initial data with respect to certain norms. Some of these solutions are proved to be asymptotically self-similar.展开更多
This paper deals with the blow up properties of the positive solutions to the nonlocal degenerate semilinear parabolic equation u t-(x αu x) x=∫ a 0f(u) d x in (0,a)×(0,T) under homogeneous Dirichl...This paper deals with the blow up properties of the positive solutions to the nonlocal degenerate semilinear parabolic equation u t-(x αu x) x=∫ a 0f(u) d x in (0,a)×(0,T) under homogeneous Dirichlet conditions. The local existence and uniqueness of classical solution are established. Under appropriate hypotheses, the global existence and blow up in finite time of positive solutions are obtained. It is also proved that the blow up set is almost the whole domain. This differs from the local case. Furthermore, the blow up rate is precisely determined for the special case: f(u)=u p,p>1.展开更多
In this paper we prove the solution of explicit difference scheme for a semilinear parabolic equation converges to the solution of difference scheme for the relevant nonlinear stationary problem as t→∞. For nonlinea...In this paper we prove the solution of explicit difference scheme for a semilinear parabolic equation converges to the solution of difference scheme for the relevant nonlinear stationary problem as t→∞. For nonlinear parabolic problem, we obtain the long time asymptotic behavior of its discrete solution which is analogous to that of its continuous solution. For simplicity, we discuss one-dimensional problem.展开更多
基金Supported by Natural Science Foundation of Youth and Tianyuan (11001177,11026156,10926141)Startup Program of Shenzhen University
文摘In this paper,we study the initial-boundary value problem for a class of singular parabolic equations.Under some conditions,we obtain the existence and asymptotic behavior of solutions to the problem by parabolic regularization method and the sub-super solutions method.As a byproduct,we prove the existence of solutions to some problems with gradient terms,which blow up on the boundary.
基金Supported by the 2018 research funding of higher education of Gansu province project[2018B-075]
文摘In this article,we investigate the longtime behavior for the following nonautonomous nonclassical parabolic equations on unbounded domain ut−∆ut−∆u+λu=f(x,u(x,t−ρ(t)))+g(x,t).Under some suitable conditions on the delay term f and the non-autonomous forcing term g,we prove the existence of uniform attractors in Banach space CH1(RN)for the multivalued process generated by non-autonomous nonclassical parabolic equations with delays in unbounded domain.
基金Supported by the NNSF of China(10441002)Supported by NNSF of Henan Province(200510466011)
文摘In this paper we study the decay estimate of global solutions to the initial-boundary value problem for double degenerate nonlinear parabolic equation by using a dif-ference inequality.
基金Supported by Shandong Provincial Natural Science Foundation of China(Grant No.ZR2021MA003,ZR2020MA020).
文摘This paper deals with a homogeneous Neumann initial-boundary problem of a 4th-order parabolic equation modeling epitaxial growth of thin film. We determine the classification of initial energy on the existence of blow-up, global existence and extinction of solutions by using the potential well method and the auxiliary function method.Moreover, asymptotic estimates on global solution and extinction solution are studied,respectively.
基金supported by the National Natural Science Foundation of China (12201282)the Institute of Meteorological Big Data-Digital Fujian and the Fujian Key Laboratory of Data Science and Statistics (2020L0705)the Education Department of Fujian Province (JAT200325)。
文摘In this paper, we consider the continuous parabolic Anderson model with a logcorrelated Gaussian field, and obtain the precise quenched long-time asymptotics and spatial asymptotics. To overcome the difficulties arising from the log-correlated Gaussian field in the proof of the lower bound of the spatial asymptotics, we first establish the relation between quenched long-time asymptotics and spatial asymptotics, and then get the lower bound of the spatial asymptotics through the lower bound of the quenched long-time asymptotics.
基金Project supported by the National Science Foundation of Guangdong Province,China(Grant No04010397)
文摘By considering higher-order effects, the properties of self-similar parabolic pulses propagating in the microstructured fibre amplifier with a normal group-velocity dispersion have been investigated. The numerical results indicate that the higher-order effects can badly distort self-similar parabolic pulse shape and optical spectrum, and at the same time the peak shift and oscillation appear, while the pulse still reveals highly linear chirp but grows into asymmetry. The influence of different higher-order effects on self-similar parabolic pulse propagation has been analysed. It shows that the self-steepening plays a more important role. We can manipulate the geometrical parameters of the microstructured fibre amplifier to gain a suitable dispersion and nonlinearity coefficient which will keep high-quality self-similar parabolic pulse propagation. These results are significant for the further study of self-similar parabolic pulse propagation.
基金Project supported by the National Natural Science Foundation of China(Nos.10971203,11271340,and 11101381)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20094101110006)
文摘A highly efficient H1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation and asymptotic expansions are studied. Then, the superconvergence of order O(h^2) for both the original variable u in H1 (Ω) norm and the flux p = u in H(div, Ω) norm is derived through the interpolation post processing technique. Furthermore, with the help of the asymptotic expansions and a suitable auxiliary problem, the extrapolation solutions with accuracy O(h^3) are obtained for the above two variables. Finally, some numerical results are provided to confirm validity of the theoretical analysis and excellent performance of the proposed method.
文摘Aict f Finjte rmvedrig wave (M) so1uhons fOr the fOllowhg sechear syttem (I){u_t-u_(xx)+u^mv^p=0 u_t-v_(xx)+u^q=0 -∞<x<+∞,t>0,p,q>0,m≥0 are studied. SolutiOns to (I) of the fOrm u (x, t)=lt(ct--x), v(x, t)=v (cl--X) are called W soIutiOns if there exjstS a fwite ', such that u({)=v(j)=0 for t<{,':=ct--x. It is proVed that if Pq+nl<l, fOr any ed c thele erktS an FTW that is inhque up to phase transIahons and Is unbOunded, whena no rm ekist if pq+m> l. The asmpptohc weve profileS near the front as well as far from it are also determined. If I)q^m = l. the exjstence of travebe wave soluhons to (I) is proved. The plnof in Esqniruis's paper(1990) for the one m=0 co be sdriplified by using the methOd develOped in thjs paper.
基金The NSFC,CPSF,SRFDP and 973 Program(2010CB808002)
文摘This paper is concerned with the existence and uniqueness of nonnegative classical solutions to the initial-boundary value problems for the pseudo-parabolic equation with strongly nonlinear sources. Furthermore, we discuss the asymptotic behavior of solutions as the viscosity coefficient k tends to zero.
基金the National Natural Science Foundation of China(No.40676016)the Major State Basic Research Development Program of China(973 Program)(Nos.2003CB415101-03 and2004CB418304)+1 种基金the Key Project of the Chinese Academy of Sciences(No.KZCX3-SW-221)partly by E-Institutes of Shanghai Municipal Education Commission(No.E03004)
文摘A class of nonlinear singularly perturbed problem of ultra parabolic equations are considered. Using the comparison theorem, the existence, uniqueness and its asymptotic behavior of solution for the problem are studied.
基金supported by the National Natural Science Foundation of China(11071119,11171153)
文摘In this article, we prove that viscosity solutions of the parabolic inhomogeneous equationsn+p/put-△p^Nu=f(x,t)can be characterized using asymptotic mean value properties for all p ≥ 1, including p = 1 and p = ∞. We also obtain a comparison principle for the non-negative or non-positive inhomogeneous term f for the corresponding initial-boundary value problem and this in turn implies the uniqueness of solutions to such a problem.
文摘This paper proves the asymptotic behaviour for a class of reaction-diffusionsystem in bacteriology by using duality technique, semigroup theorem, Lp--estimates andupper and lower solutions method.
文摘We study the approximation of variational inequality related to American options problem. A simple proof to asymptotic behavior is also given using the theta time scheme combined with a finite element spatial approximation in uniform norm, which enables us to locate free boundary in practice.
文摘We give a brief introduction to results on the asymptotics of quantization errors. The topics discussed include the quantization dimension,asymptotic distributions of sets of prototypes,asymptotically optimal quantizations,approximations and random quantizations.
文摘In this article,we study the initial boundary value problem of coupled semi-linear degenerate parabolic equations with a singular potential term on manifolds with corner singularities.Firstly,we introduce the corner type weighted p-Sobolev spaces and the weighted corner type Sobolev inequality,the Poincare′inequality,and the Hardy inequality.Then,by using the potential well method and the inequality mentioned above,we obtain an existence theorem of global solutions with exponential decay and show the blow-up in finite time of solutions for both cases with low initial energy and critical initial energy.Significantly,the relation between the above two phenomena is derived as a sharp condition.Moreover,we show that the global existence also holds for the case of a potential well family.
基金Supported by the NNSF of China(40676016,10471039)the National Key Project for Basics Research(2003CB415101-03 and 2004CB418304)+1 种基金the Key Project of the Chinese Academy of Sciences(KZCX3-SW-221)in part by E-Institutes of Shanghai Municipal Education Commission(N.E03004).
文摘In this paper the nonlinear reaction diffusion problems with ultraparabolic equations are considered. By using comparison theorem, the existence, uniqueness and asymptotic behavior of solution for the problem are studied.
基金Supported by the National Natural Science Foundation of China(10671182)
文摘In this paper,the existence,the uniqueness,the asymptotic behavior and the non-existence of the global generalized solutions of the initial boundary value problems for the non-linear pseudo-parabolic equation ut-αuxx-βuxxt=F(u)-βF (u)xx are proved,where α,β 0 are constants,F(s) is a given function.
基金This work was supported by the National Natural Science Foundation of China 10701024 and the Natural Science Foundation of Tianjin of China (08JYBJC12100).
文摘In this paper, we study the higher-order semilinear parabolic system{ut+(-△)^mu=a|v|^p-1v,(t,x)∈R^1+×R^N,vt+(-△)^mv=b|u|^q-1u,(t,x)∈R^1+×R^N,u(0,x)=φ(x),v(0,x)=ψ(x),x∈R^N, where m, p,q 〉 1, a,b ∈R. We prove that the global existence of mild solutions for small initial data with respect to certain norms. Some of these solutions are proved to be asymptotically self-similar.
文摘This paper deals with the blow up properties of the positive solutions to the nonlocal degenerate semilinear parabolic equation u t-(x αu x) x=∫ a 0f(u) d x in (0,a)×(0,T) under homogeneous Dirichlet conditions. The local existence and uniqueness of classical solution are established. Under appropriate hypotheses, the global existence and blow up in finite time of positive solutions are obtained. It is also proved that the blow up set is almost the whole domain. This differs from the local case. Furthermore, the blow up rate is precisely determined for the special case: f(u)=u p,p>1.
文摘In this paper we prove the solution of explicit difference scheme for a semilinear parabolic equation converges to the solution of difference scheme for the relevant nonlinear stationary problem as t→∞. For nonlinear parabolic problem, we obtain the long time asymptotic behavior of its discrete solution which is analogous to that of its continuous solution. For simplicity, we discuss one-dimensional problem.