Because of its unique optoelectronic properties,people have studied the characteristics of polarons in various quantum well(QW)models.Among them,the asymmetrical semiexponential QW(ASEQW)is a new model for studying th...Because of its unique optoelectronic properties,people have studied the characteristics of polarons in various quantum well(QW)models.Among them,the asymmetrical semiexponential QW(ASEQW)is a new model for studying the structure of QWs in recent years.It is of great significance to study the influences of the impurity and anisotropic parabolic confinement potential(APCP)on the crystal’s properties,because some of the impurities,usually regarded as Coulomb’s impurity potential(CIP),will exist in the crystal more or less,and the APCP has flexible adjustment parameters.However,the energy characteristics of the ASEQW under the combined actions of impurities and APCP have not been studied,which is the motivation of this paper.Using the linear combination operation and Lee-Low-Pines unitary transformation methods,we investigate the vibrational frequency and the ground state energy of the strong coupling polaron in an ASEQW with the influences of the CIP at the origin of coordinates and APCP,and make a comparison between our results and previous literature’s.Our numerical results about the energy properties in the ASEQW influenced by the CIP and APCP may have important significances for experimental design and device preparation.展开更多
基金This project was supported by the National Natural Science Foundation of China under Grant No.11464034the National Science Foundation of Inner Mongolia Autonomous Region under Grant Nos.2016MS0119 and 2016BS0107+1 种基金Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region under Grant No.NJZY16183the Scientific Research Fund of Inner Mongolia University for Nationalities under Grant Nos.NMDYB1756 and NMDYB18024.
文摘Because of its unique optoelectronic properties,people have studied the characteristics of polarons in various quantum well(QW)models.Among them,the asymmetrical semiexponential QW(ASEQW)is a new model for studying the structure of QWs in recent years.It is of great significance to study the influences of the impurity and anisotropic parabolic confinement potential(APCP)on the crystal’s properties,because some of the impurities,usually regarded as Coulomb’s impurity potential(CIP),will exist in the crystal more or less,and the APCP has flexible adjustment parameters.However,the energy characteristics of the ASEQW under the combined actions of impurities and APCP have not been studied,which is the motivation of this paper.Using the linear combination operation and Lee-Low-Pines unitary transformation methods,we investigate the vibrational frequency and the ground state energy of the strong coupling polaron in an ASEQW with the influences of the CIP at the origin of coordinates and APCP,and make a comparison between our results and previous literature’s.Our numerical results about the energy properties in the ASEQW influenced by the CIP and APCP may have important significances for experimental design and device preparation.