This paper deals with a-posteriori error estimates for piecewise linear finite element approximations of parabolic problems in two space dimensions. The analysis extends previous results for elliptic problems to the p...This paper deals with a-posteriori error estimates for piecewise linear finite element approximations of parabolic problems in two space dimensions. The analysis extends previous results for elliptic problems to the parabolic context.展开更多
A single step scheme with high accuracy for solving parabolic problem is proposed. It is shown that this scheme possesses good stability and fourth order accuracy with respect to both time and space variables, which a...A single step scheme with high accuracy for solving parabolic problem is proposed. It is shown that this scheme possesses good stability and fourth order accuracy with respect to both time and space variables, which are superconvergent.展开更多
We give an existence result of the obstacle parabolic equations3b(x,u) div(a(x,t,u, Vu))+div((x,t,u))=f in QT, 3twhere b(x,u) is bounded function ot u, the term atva,x,r,u, v u)) is a Letay type operat...We give an existence result of the obstacle parabolic equations3b(x,u) div(a(x,t,u, Vu))+div((x,t,u))=f in QT, 3twhere b(x,u) is bounded function ot u, the term atva,x,r,u, v u)) is a Letay type operator and the function is a nonlinear lower order and satisfy only the growth condition. The second term belongs to L1 (QT). The proof of an existence solution is based on the penalization methods.展开更多
In this paper, the Crank-Nicolson/Newton scheme for solving numerically second- order nonlinear parabolic problem is proposed. The standard Galerkin finite element method based on P2 conforming elements is used to the...In this paper, the Crank-Nicolson/Newton scheme for solving numerically second- order nonlinear parabolic problem is proposed. The standard Galerkin finite element method based on P2 conforming elements is used to the spatial discretization of the problem and the Crank-Nieolson/Newton scheme is applied to the time discretization of the resulted finite element equations. Moreover, assuming the appropriate regularity of the exact solution and the finite element solution, we obtain optimal error estimates of the fully discrete Crank- Nicolson/Newton scheme of nonlinear parabolic problem. Finally, numerical experiments are presented to show the efficient performance of the proposed scheme.展开更多
This paper deals with a parabolic system in a multi dimentional bounded domain ΩR n with the smooth boundary Ω. We discuss an inverse parabolic problem of determining the indirectly measurable internal heat distri...This paper deals with a parabolic system in a multi dimentional bounded domain ΩR n with the smooth boundary Ω. We discuss an inverse parabolic problem of determining the indirectly measurable internal heat distribution at any intermediate moment from the heat distribution measurements in arbitrary accessible subdomain ωΩ at some time interval. Our main result is the Hlder stability estimate in the inverse problem and the proof is completed with a Carleman estimate and a eigenfunction expansion for parabolic equations.展开更多
.In this paper,a quadratic finite volume method(FVM)for parabolic problems is studied.We first discretize the spatial variables using a quadratic FVM to obtain a semi-discrete scheme.We then employ the backward Euler ....In this paper,a quadratic finite volume method(FVM)for parabolic problems is studied.We first discretize the spatial variables using a quadratic FVM to obtain a semi-discrete scheme.We then employ the backward Euler method and the Crank-Nicolson method respectively to further disctetize the time vatiable so as to derive two full-discrete schemes.The existence and uniqueness of the semi-discrete and full-discrete FVM solutions are established and their optimal error estimates are derived.Finally,we give numerical examples to illustrate the theoretical results.展开更多
In this paper,a new finite element and finite difference(FE-FD)method has been developed for anisotropic parabolic interface problems with a known moving interface using Cartesian meshes.In the spatial discretization,...In this paper,a new finite element and finite difference(FE-FD)method has been developed for anisotropic parabolic interface problems with a known moving interface using Cartesian meshes.In the spatial discretization,the standard P,FE discretization is applied so that the part of the coefficient matrix is symmetric positive definite,while near the interface,the maximum principle preserving immersed interface discretization is applied.In the time discretization,a modified Crank-Nicolson discretization is employed so that the hybrid FE-FD is stable and second order accurate.Correction terms are needed when the interface crosses grid lines.The moving interface is represented by the zero level set of a Lipschitz continuous function.Numerical experiments presented in this paper confirm second orderconvergence.展开更多
In this paper, we develop the cascadic multigrid method for parabolic problems. The optimal convergence accuracy and computation complexity are obtained.
In this paper,we consider the cascadic multigrid method for a parabolic type equation.Backward Euler approximation in time and linear finite element approximation in space are employed.A stability result is establishe...In this paper,we consider the cascadic multigrid method for a parabolic type equation.Backward Euler approximation in time and linear finite element approximation in space are employed.A stability result is established under some conditions on the smoother.Using new and sharper estimates for the smoothers that reflect the precise dependence on the time step and the spatial mesh parameter,these conditions are verified for a number of popular smoothers.Optimal error bound sare derived for both smooth and non-smooth data.Iteration strategies guaranteeing both the optimal accuracy and the optimal complexity are presented.展开更多
In this paper, a mortar finite element method for parabolic problem is presented. Multi-grid method is used for solving the resulting discrete system. It is shown that the multigrid method is optimal, i.e, the converg...In this paper, a mortar finite element method for parabolic problem is presented. Multi-grid method is used for solving the resulting discrete system. It is shown that the multigrid method is optimal, i.e, the convergence rate is independent of the mesh size L and the time step parameter τ.展开更多
This paper is concerned with numerical solutions of time-fractional nonlinear parabolic problems by a class of L1-Galerkin finite element methods.The analysis of L1 methods for time-fractional nonlinear problems is li...This paper is concerned with numerical solutions of time-fractional nonlinear parabolic problems by a class of L1-Galerkin finite element methods.The analysis of L1 methods for time-fractional nonlinear problems is limited mainly due to the lack of a fundamental Gronwall type inequality.In this paper,we establish such a fundamental inequality for the L1 approximation to the Caputo fractional derivative.In terms of the Gronwall type inequality,we provide optimal error estimates of several fully discrete linearized Galerkin finite element methods for nonlinear problems.The theoretical results are illustrated by applying our proposed methods to the time fractional nonlinear Huxley equation and time fractional Fisher equation.展开更多
A low order nonconforming finite element is applied to the parabolic problem with anisotropicmeshes.Both the semidiscrete and fully discrete forms are studied.Some superclose properties andsuperconvergence are obtaine...A low order nonconforming finite element is applied to the parabolic problem with anisotropicmeshes.Both the semidiscrete and fully discrete forms are studied.Some superclose properties andsuperconvergence are obtained through some novel approaches and techniques.展开更多
A weak Galerkin finite element method with stabilization term, which is symmetric, positive definite and parameter free, was proposed to solve parabolic equations by using weakly defined gradient operators over discon...A weak Galerkin finite element method with stabilization term, which is symmetric, positive definite and parameter free, was proposed to solve parabolic equations by using weakly defined gradient operators over discontinuous functions. In this paper, we derive the optimal order error estimate in L2 norm based on dual argument. Numerical experiment is conducted to confirm the theoretical results.展开更多
The fast solutions of Crank-Nicolson scheme on quasi-uniform mesh for parabolic prob- lems are discussed. First, to decrease regularity requirements of solutions, some new error estimates are proved. Second, we analyz...The fast solutions of Crank-Nicolson scheme on quasi-uniform mesh for parabolic prob- lems are discussed. First, to decrease regularity requirements of solutions, some new error estimates are proved. Second, we analyze the two characteristics of parabolic discrete scheme, and find that the efficiency of Multigrid Method (MG) is greatly reduced. Nu- merical experiments compare the efficiency of Direct Conjugate Gradient Method (DCG) and Extrapolation Cascadic Multigrid Method (EXCMG). Last, we propose a Time- Extrapolation Algorithm (TEA), which takes a linear combination of previous several level solutions as good initial values to accelerate the rate of convergence. Some typical extrapolation formulas are compared numerically. And we find that under certain accuracy requirement, the CG iteration count for the 3-order and 7-level extrapolation formula is about 1/3 of that of DCG's. Since the TEA algorithm is independent of the space dimension, it is still valid for quasi-uniform meshes. As only the finest grid is needed, the proposed method is regarded very effective for nonlinear parabolic problems.展开更多
The multigrid algorithm in [13] is developed for solving nonlinear parabolic equations arising from the finite element discretization. The computational cost of the algorithm is approximate O(NkN) where N-k is the dim...The multigrid algorithm in [13] is developed for solving nonlinear parabolic equations arising from the finite element discretization. The computational cost of the algorithm is approximate O(NkN) where N-k is the dimension of the finite element space and N is the number of time steps.展开更多
In this work, two-grid characteristic finite volume schemes for the nonlinear parabolic problem are considered. In our algorithms, the diffusion term is discretized by the finite volume method, while the temporal diff...In this work, two-grid characteristic finite volume schemes for the nonlinear parabolic problem are considered. In our algorithms, the diffusion term is discretized by the finite volume method, while the temporal differentiation and advection terms are treated by the characteristic scheme. Under some conditions about the coefficients and exact solution, optimal error estimates for the numerical solution are obtained. Furthermore, the two- grid characteristic finite volume methods involve solving a nonlinear equation on coarse mesh with mesh size H, a large linear problem for the Oseen two-grid characteristic finite volume method on a fine mesh with mesh size h = O(H2) or a large linear problem for the Newton two-grid characteristic finite volume method on a fine mesh with mesh size h = 0(I log hll/2H3). These methods we studied provide the same convergence rate as that of the characteristic finite volume method, which involves solving one large nonlinear problem on a fine mesh with mesh size h. Some numerical results are presented to demonstrate the efficiency of the proposed methods.展开更多
In this paper, we derive an upper bound estimate of the blow-up rate for positive solutions of indefinite parabolic equations from Liouville type theorems. We also use moving plane method to prove the related Liouvill...In this paper, we derive an upper bound estimate of the blow-up rate for positive solutions of indefinite parabolic equations from Liouville type theorems. We also use moving plane method to prove the related Liouville type theorems for semilinear parabolic problems.展开更多
In this paper, an existence result of entropy solutions to some parabolic problems is established. The data belongs to L^1 and no growth assumption is made on the lower-order term in divergence form.
This paper deals with a monotone weighted average iterative method for solving semilinear singularly perturbed parabolic problems. Monotone sequences, based on the ac- celerated monotone iterative method, are construc...This paper deals with a monotone weighted average iterative method for solving semilinear singularly perturbed parabolic problems. Monotone sequences, based on the ac- celerated monotone iterative method, are constructed for a nonlinear difference scheme which approximates the semilinear parabolic problem. This monotone convergence leads to the existence-uniqueness theorem. An analysis of uniform convergence of the monotone weighted average iterative method to the solutions of the nonlinear difference scheme and continuous problem is given. Numerical experiments are presented.展开更多
In this paper, we derive a priori bounds for global solutions of 2m-th order semilinear parabolic equations with superlinear and subcritical growth conditions. The proof is obtained by a bootstrap argument and maximal...In this paper, we derive a priori bounds for global solutions of 2m-th order semilinear parabolic equations with superlinear and subcritical growth conditions. The proof is obtained by a bootstrap argument and maximal regularity estimates. If n≥ 10/3m, we also give another proof which does not use maximal regularity estimates.展开更多
文摘This paper deals with a-posteriori error estimates for piecewise linear finite element approximations of parabolic problems in two space dimensions. The analysis extends previous results for elliptic problems to the parabolic context.
基金Supported by The National Natural Science Foundations of China (19871027)
文摘A single step scheme with high accuracy for solving parabolic problem is proposed. It is shown that this scheme possesses good stability and fourth order accuracy with respect to both time and space variables, which are superconvergent.
文摘We give an existence result of the obstacle parabolic equations3b(x,u) div(a(x,t,u, Vu))+div((x,t,u))=f in QT, 3twhere b(x,u) is bounded function ot u, the term atva,x,r,u, v u)) is a Letay type operator and the function is a nonlinear lower order and satisfy only the growth condition. The second term belongs to L1 (QT). The proof of an existence solution is based on the penalization methods.
基金in part supported by the Distinguished Young Scholars Fund of Xinjiang Province(2013711010)NCET-13-0988the NSF of China(11271313,11271298,61163027,and 11362021)
文摘In this paper, the Crank-Nicolson/Newton scheme for solving numerically second- order nonlinear parabolic problem is proposed. The standard Galerkin finite element method based on P2 conforming elements is used to the spatial discretization of the problem and the Crank-Nieolson/Newton scheme is applied to the time discretization of the resulted finite element equations. Moreover, assuming the appropriate regularity of the exact solution and the finite element solution, we obtain optimal error estimates of the fully discrete Crank- Nicolson/Newton scheme of nonlinear parabolic problem. Finally, numerical experiments are presented to show the efficient performance of the proposed scheme.
文摘This paper deals with a parabolic system in a multi dimentional bounded domain ΩR n with the smooth boundary Ω. We discuss an inverse parabolic problem of determining the indirectly measurable internal heat distribution at any intermediate moment from the heat distribution measurements in arbitrary accessible subdomain ωΩ at some time interval. Our main result is the Hlder stability estimate in the inverse problem and the proof is completed with a Carleman estimate and a eigenfunction expansion for parabolic equations.
基金supported in part by the National Natural Science Foundation of China under grant No.11901506by the Shandong Province Natural Science Foundation under grant No.ZR2018QA003 and ZR2021MA010.
文摘.In this paper,a quadratic finite volume method(FVM)for parabolic problems is studied.We first discretize the spatial variables using a quadratic FVM to obtain a semi-discrete scheme.We then employ the backward Euler method and the Crank-Nicolson method respectively to further disctetize the time vatiable so as to derive two full-discrete schemes.The existence and uniqueness of the semi-discrete and full-discrete FVM solutions are established and their optimal error estimates are derived.Finally,we give numerical examples to illustrate the theoretical results.
基金partially supported by the National Natural Science Foundation of China(Grant No.12261070)the Ningxia Key Research and Development Project of China(Grant No.2022BSB03048)+2 种基金partially supported by the Simons(Grant No.633724)and by Fundacion Seneca grant 21760/IV/22partially supported by the Spanish national research project PID2019-108336GB-I00by Fundacion Séneca grant 21728/EE/22.Este trabajo es resultado de las estancias(21760/IV/22)y(21728/EE/22)financiadas por la Fundacion Séneca-Agencia de Ciencia y Tecnologia de la Region de Murcia con cargo al Programa Regional de Movilidad,Colaboracion Internacional e Intercambio de Conocimiento"Jimenez de la Espada".(Plan de Actuacion 2022).
文摘In this paper,a new finite element and finite difference(FE-FD)method has been developed for anisotropic parabolic interface problems with a known moving interface using Cartesian meshes.In the spatial discretization,the standard P,FE discretization is applied so that the part of the coefficient matrix is symmetric positive definite,while near the interface,the maximum principle preserving immersed interface discretization is applied.In the time discretization,a modified Crank-Nicolson discretization is employed so that the hybrid FE-FD is stable and second order accurate.Correction terms are needed when the interface crosses grid lines.The moving interface is represented by the zero level set of a Lipschitz continuous function.Numerical experiments presented in this paper confirm second orderconvergence.
基金Subeidized by the Special Funds for Major State Basic Research Projects.
文摘In this paper, we develop the cascadic multigrid method for parabolic problems. The optimal convergence accuracy and computation complexity are obtained.
基金the National Science Foundation(Grant Nos.DMS0409297,DMR0205232,CCF-0430349)US National Institute of Health-National Cancer Institute(Grant No.1R01CA125707-01A1)+2 种基金the National Natural Science Foundation of China(Grant No.10571172)the National Basic Research Program(Grant No.2005CB321704)the Youth's Innovative Program of Chinese Academy of Sciences(Grant Nos.K7290312G9,K7502712F9)
文摘In this paper,we consider the cascadic multigrid method for a parabolic type equation.Backward Euler approximation in time and linear finite element approximation in space are employed.A stability result is established under some conditions on the smoother.Using new and sharper estimates for the smoothers that reflect the precise dependence on the time step and the spatial mesh parameter,these conditions are verified for a number of popular smoothers.Optimal error bound sare derived for both smooth and non-smooth data.Iteration strategies guaranteeing both the optimal accuracy and the optimal complexity are presented.
基金The research was supported by the Special Funds for Major State Basic Research Projects G1999032804 and a grant from LIAMA
文摘In this paper, a mortar finite element method for parabolic problem is presented. Multi-grid method is used for solving the resulting discrete system. It is shown that the multigrid method is optimal, i.e, the convergence rate is independent of the mesh size L and the time step parameter τ.
基金This work is supported by NSFC(Grant Nos.11771035,11771162,11571128,61473126,91430216,91530204,11372354 and U1530401),a grant from the RGC of HK 11300517,China(Project No.CityU 11302915),China Postdoctoral Science Foundation under grant No.2016M602273,a grant DRA2015518 from 333 High-level Personal Training Project of Jiangsu Province,and the USA National Science Foundation grant DMS-1315259the USA Air Force Office of Scientific Research grant FA9550-15-1-0001.Jiwei Zhang also thanks the hospitality of Hong Kong City University during the period of his visiting.
文摘This paper is concerned with numerical solutions of time-fractional nonlinear parabolic problems by a class of L1-Galerkin finite element methods.The analysis of L1 methods for time-fractional nonlinear problems is limited mainly due to the lack of a fundamental Gronwall type inequality.In this paper,we establish such a fundamental inequality for the L1 approximation to the Caputo fractional derivative.In terms of the Gronwall type inequality,we provide optimal error estimates of several fully discrete linearized Galerkin finite element methods for nonlinear problems.The theoretical results are illustrated by applying our proposed methods to the time fractional nonlinear Huxley equation and time fractional Fisher equation.
基金supported by the National Natural Science Foundation of China under Grant No. 10671184.
文摘A low order nonconforming finite element is applied to the parabolic problem with anisotropicmeshes.Both the semidiscrete and fully discrete forms are studied.Some superclose properties andsuperconvergence are obtained through some novel approaches and techniques.
基金The authors thank the referees and the editor for their invaluable comments and suggestions which have helped to improved the paper greatly. Also, the authors would like to thank Prof. Xiu Ye for useful discussions and Dr. Paul Scott for helpful revision. This work is done when the first author is visiting Department of Mathematics and Statistics, University of Arkansas at Little Rock under supported by the State Scholarship Fund from the China Scholarship Council. The first author's research is partially supported by the Natural Science Foundation of Shandong Province of China grant ZR2013AM023, ZR2012AM019.
文摘A weak Galerkin finite element method with stabilization term, which is symmetric, positive definite and parameter free, was proposed to solve parabolic equations by using weakly defined gradient operators over discontinuous functions. In this paper, we derive the optimal order error estimate in L2 norm based on dual argument. Numerical experiment is conducted to confirm the theoretical results.
基金This work was supported by the National Natural Science Foundation of China (No. 11071067, 41204082, 11301176), the Research Fund for the Doctoral Program of Higher Education of China (No. 20120162120036), the Hunan Provincial Natural Science Foundation of China (No. 14JJ3070) and the Construct Program of the Key Discipline in Hunan Province.
文摘The fast solutions of Crank-Nicolson scheme on quasi-uniform mesh for parabolic prob- lems are discussed. First, to decrease regularity requirements of solutions, some new error estimates are proved. Second, we analyze the two characteristics of parabolic discrete scheme, and find that the efficiency of Multigrid Method (MG) is greatly reduced. Nu- merical experiments compare the efficiency of Direct Conjugate Gradient Method (DCG) and Extrapolation Cascadic Multigrid Method (EXCMG). Last, we propose a Time- Extrapolation Algorithm (TEA), which takes a linear combination of previous several level solutions as good initial values to accelerate the rate of convergence. Some typical extrapolation formulas are compared numerically. And we find that under certain accuracy requirement, the CG iteration count for the 3-order and 7-level extrapolation formula is about 1/3 of that of DCG's. Since the TEA algorithm is independent of the space dimension, it is still valid for quasi-uniform meshes. As only the finest grid is needed, the proposed method is regarded very effective for nonlinear parabolic problems.
文摘The multigrid algorithm in [13] is developed for solving nonlinear parabolic equations arising from the finite element discretization. The computational cost of the algorithm is approximate O(NkN) where N-k is the dimension of the finite element space and N is the number of time steps.
基金Acknowledgments. The work was supported by the Natural Science Foundation of China (No.11126117), CAPES and CNPq of Brazil, and the Doctor Fund of Henan Polytechnic Univer- sity (B2012-098). The author is very grateful to Professor JinYun Yuan for his kind invitation to visit the Universidade Federal do Paran, Brazil.
文摘In this work, two-grid characteristic finite volume schemes for the nonlinear parabolic problem are considered. In our algorithms, the diffusion term is discretized by the finite volume method, while the temporal differentiation and advection terms are treated by the characteristic scheme. Under some conditions about the coefficients and exact solution, optimal error estimates for the numerical solution are obtained. Furthermore, the two- grid characteristic finite volume methods involve solving a nonlinear equation on coarse mesh with mesh size H, a large linear problem for the Oseen two-grid characteristic finite volume method on a fine mesh with mesh size h = O(H2) or a large linear problem for the Newton two-grid characteristic finite volume method on a fine mesh with mesh size h = 0(I log hll/2H3). These methods we studied provide the same convergence rate as that of the characteristic finite volume method, which involves solving one large nonlinear problem on a fine mesh with mesh size h. Some numerical results are presented to demonstrate the efficiency of the proposed methods.
文摘In this paper, we derive an upper bound estimate of the blow-up rate for positive solutions of indefinite parabolic equations from Liouville type theorems. We also use moving plane method to prove the related Liouville type theorems for semilinear parabolic problems.
文摘In this paper, an existence result of entropy solutions to some parabolic problems is established. The data belongs to L^1 and no growth assumption is made on the lower-order term in divergence form.
文摘This paper deals with a monotone weighted average iterative method for solving semilinear singularly perturbed parabolic problems. Monotone sequences, based on the ac- celerated monotone iterative method, are constructed for a nonlinear difference scheme which approximates the semilinear parabolic problem. This monotone convergence leads to the existence-uniqueness theorem. An analysis of uniform convergence of the monotone weighted average iterative method to the solutions of the nonlinear difference scheme and continuous problem is given. Numerical experiments are presented.
文摘In this paper, we derive a priori bounds for global solutions of 2m-th order semilinear parabolic equations with superlinear and subcritical growth conditions. The proof is obtained by a bootstrap argument and maximal regularity estimates. If n≥ 10/3m, we also give another proof which does not use maximal regularity estimates.