The superconducting tokamak HT-7U [1] has been designed by the Institute of Plasma Physics since 1998 and will be set up before 2003. The 1.2 MW /2.45 GHz HT-7U LHCD (Lower hybrid current drive) system which being the...The superconducting tokamak HT-7U [1] has been designed by the Institute of Plasma Physics since 1998 and will be set up before 2003. The 1.2 MW /2.45 GHz HT-7U LHCD (Lower hybrid current drive) system which being the most efficient non-induction device can heat the plasma and drive the plasma current has been efficiently in operation 'owl and a particular design of the 2.8 MW/-35 kV high-voltage DC power supply has been already completed and will apply to the klystron of LHCD on HT-7 and the future HT-7U, and the project of the power supply has been examined and approved professionally by an authorized group of high-level specialist in the institute of Plasma Physics. The detailed design of the power supply and the simulation results are referred in the paper.展开更多
A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to...A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to poor performance.The method combines a fault-tolerant fault location method based on long-term and short-term memory networks to accurately locate the fault section.Then,an operation control method for relay protection based on adaptive weight and whale optimization algorithm(WOA)is used to construct an objective function considering the shortest relay protection action time and the smallest impulse current.The adaptive weight and WOA are employed to obtain the optimal strategy for relay protection operation control,reducing the action time and impulse current.Experimental results demonstrate the effectiveness of the proposed method in accurately locating faults and improving relay protection performance.The longest operation time is reduced by 4.7023 s,and the maximum impulse current is limited to 0.3 A,effectively controlling the impact of large impulse currents and enhancing control efficiency.展开更多
In order to solve the disadvantages caused by mechanical slide rheostat that has big errors and low precision,a novel voltage regulation method for high voltage DC power supply was introduced.The key of this method we...In order to solve the disadvantages caused by mechanical slide rheostat that has big errors and low precision,a novel voltage regulation method for high voltage DC power supply was introduced.The key of this method were digital potentiometer MAXIM 5455 and linear photoelectric coupling LOC110,and application programs were compiled using Visual Basic which was graphical compiling language,furthermore the communication between exterior and computer was carried out by ICP7044D module,in consequence the output value of high voltage DC power supply could be regulated with computer.The measured results showed that this method could accurately,conveniently and rapidly regulate the output value of high voltage DC power supply.展开更多
以应用于车载辅助电源模块APM(auxiliary power module)的DC-DC变换器设计为研究对象,提出1种由三电平升压型TL-Boost(three-level Boost)拓扑和半桥LLC谐振拓扑构成的两级式DC-DC变换器拓扑结构,分析其工作原理。前级TL-Boost拓扑将宽...以应用于车载辅助电源模块APM(auxiliary power module)的DC-DC变换器设计为研究对象,提出1种由三电平升压型TL-Boost(three-level Boost)拓扑和半桥LLC谐振拓扑构成的两级式DC-DC变换器拓扑结构,分析其工作原理。前级TL-Boost拓扑将宽范围的输入电压转换为稳定电压,保证了后级半桥LLC谐振拓扑的高效率运行。通过搭建实验平台并进行相关实验,结果验证了所提DC-DC变换器的可行性和正确性。展开更多
The large-scale development of wind power is an important means to reduce greenhouse gas emissions, alleviate environmental pollution and improve the utilization rate of renewable energy. At the same time, large-scale...The large-scale development of wind power is an important means to reduce greenhouse gas emissions, alleviate environmental pollution and improve the utilization rate of renewable energy. At the same time, large-scale non grid connected wind power generation theory avoids the technical difficulties of wind power integration [1]. However, due to the randomness and uncontrollability of wind energy, the output power of the wind power generation system will fluctuate accordingly [2]. Therefore, the corresponding energy storage devices are arranged in the non-grid-connected wind power generation system to ensure the power quality, and it has become the key to full utilization of renewable energy. In the case of wind speed fluctuation, the DC bus control strategy of the wind turbine is proposed in this paper. It can reduce the impact on the unit converter and the power load;this ensures safe and stable operation of non-grid connected wind turbines.展开更多
Multi-converter approach based on the series and parallel connection topology of modular power converters has been proposed to realize higher power density DC-DC converter. The availability of the proposed approach ha...Multi-converter approach based on the series and parallel connection topology of modular power converters has been proposed to realize higher power density DC-DC converter. The availability of the proposed approach has been verified through the design consideration and the experiment. The design consideration for two DC-DC converters has been carried out by utilizing the power converter exact loss simulator, and the design parameters to maximize their power densities have been extracted taking the trade-off between the conversion efficiency and the power density into account. The prototypes of a 2,400 W, 256-384 V boost chopper using SiC-MOSFETs and a 300 W, 32-48 V GaN-FETs boost chopper have been also developed based on the design. The SiC chopper achieved the efficiency of 97.8% and the power density of 12,8 W/cm3, and the GaN chopper accomplished 98.9% and 18.6 W/cm3 in the experiment. These results show the validity of the design and the availability of the proposed approach. The multi-converter approach enables the cost reduction of the modular power converters, and contributes to realizing the widespread use of power electronics converters in the future 380 V DC distribution system.展开更多
文摘The superconducting tokamak HT-7U [1] has been designed by the Institute of Plasma Physics since 1998 and will be set up before 2003. The 1.2 MW /2.45 GHz HT-7U LHCD (Lower hybrid current drive) system which being the most efficient non-induction device can heat the plasma and drive the plasma current has been efficiently in operation 'owl and a particular design of the 2.8 MW/-35 kV high-voltage DC power supply has been already completed and will apply to the klystron of LHCD on HT-7 and the future HT-7U, and the project of the power supply has been examined and approved professionally by an authorized group of high-level specialist in the institute of Plasma Physics. The detailed design of the power supply and the simulation results are referred in the paper.
文摘A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to poor performance.The method combines a fault-tolerant fault location method based on long-term and short-term memory networks to accurately locate the fault section.Then,an operation control method for relay protection based on adaptive weight and whale optimization algorithm(WOA)is used to construct an objective function considering the shortest relay protection action time and the smallest impulse current.The adaptive weight and WOA are employed to obtain the optimal strategy for relay protection operation control,reducing the action time and impulse current.Experimental results demonstrate the effectiveness of the proposed method in accurately locating faults and improving relay protection performance.The longest operation time is reduced by 4.7023 s,and the maximum impulse current is limited to 0.3 A,effectively controlling the impact of large impulse currents and enhancing control efficiency.
基金Project Supported by National Natural Science Foundation of China(50637020).
文摘In order to solve the disadvantages caused by mechanical slide rheostat that has big errors and low precision,a novel voltage regulation method for high voltage DC power supply was introduced.The key of this method were digital potentiometer MAXIM 5455 and linear photoelectric coupling LOC110,and application programs were compiled using Visual Basic which was graphical compiling language,furthermore the communication between exterior and computer was carried out by ICP7044D module,in consequence the output value of high voltage DC power supply could be regulated with computer.The measured results showed that this method could accurately,conveniently and rapidly regulate the output value of high voltage DC power supply.
文摘以应用于车载辅助电源模块APM(auxiliary power module)的DC-DC变换器设计为研究对象,提出1种由三电平升压型TL-Boost(three-level Boost)拓扑和半桥LLC谐振拓扑构成的两级式DC-DC变换器拓扑结构,分析其工作原理。前级TL-Boost拓扑将宽范围的输入电压转换为稳定电压,保证了后级半桥LLC谐振拓扑的高效率运行。通过搭建实验平台并进行相关实验,结果验证了所提DC-DC变换器的可行性和正确性。
文摘The large-scale development of wind power is an important means to reduce greenhouse gas emissions, alleviate environmental pollution and improve the utilization rate of renewable energy. At the same time, large-scale non grid connected wind power generation theory avoids the technical difficulties of wind power integration [1]. However, due to the randomness and uncontrollability of wind energy, the output power of the wind power generation system will fluctuate accordingly [2]. Therefore, the corresponding energy storage devices are arranged in the non-grid-connected wind power generation system to ensure the power quality, and it has become the key to full utilization of renewable energy. In the case of wind speed fluctuation, the DC bus control strategy of the wind turbine is proposed in this paper. It can reduce the impact on the unit converter and the power load;this ensures safe and stable operation of non-grid connected wind turbines.
文摘Multi-converter approach based on the series and parallel connection topology of modular power converters has been proposed to realize higher power density DC-DC converter. The availability of the proposed approach has been verified through the design consideration and the experiment. The design consideration for two DC-DC converters has been carried out by utilizing the power converter exact loss simulator, and the design parameters to maximize their power densities have been extracted taking the trade-off between the conversion efficiency and the power density into account. The prototypes of a 2,400 W, 256-384 V boost chopper using SiC-MOSFETs and a 300 W, 32-48 V GaN-FETs boost chopper have been also developed based on the design. The SiC chopper achieved the efficiency of 97.8% and the power density of 12,8 W/cm3, and the GaN chopper accomplished 98.9% and 18.6 W/cm3 in the experiment. These results show the validity of the design and the availability of the proposed approach. The multi-converter approach enables the cost reduction of the modular power converters, and contributes to realizing the widespread use of power electronics converters in the future 380 V DC distribution system.