In this paper some new parallel difference schemes with interface extrapolation terms for a quasi-linear parabolic system of equations are constructed. Two types of time extrapolations are proposed to give the interfa...In this paper some new parallel difference schemes with interface extrapolation terms for a quasi-linear parabolic system of equations are constructed. Two types of time extrapolations are proposed to give the interface values on the interface of sub-domains or the values adjacent to the interface points, so that the unconditional stable parallel schemes with the second accuracy are formed. Without assuming heuristically that the original boundary value problem has the unique smooth vector solution, the existence and uniqueness of the discrete vector solutions of the parallel difference schemes constructed are proved. Moreover the unconditional stability of the parallel difference schemes is justified in the sense of the continuous dependence of the discrete vector solution of the schemes on the discrete known data of the original problems in the discrete W2(2,1) (Q△) norms. Finally the convergence of the discrete vector solutions of the parallel difference schemes with interface extrapolation terms to the unique generalized solution of the original quasi-linear parabolic problem is proved. Numerical results are presented to show the good performance of the parallel schemes, including the unconditional stability, the second accuracy and the high parallelism.展开更多
For solving nonlinear parabolic equation on massive parallel computers, the construction of parallel difference schemes with simple design, high parallelism and unconditional stability and second order global accuracy...For solving nonlinear parabolic equation on massive parallel computers, the construction of parallel difference schemes with simple design, high parallelism and unconditional stability and second order global accuracy in space, has long been desired. In the present work, a new kind of general parallel difference schemes for the nonlinear parabolic system is proposed. The general parallel difference schemes include, among others, two new parallel schemes. In one of them, to obtain the interface values on the interface of sub-domains an explicit scheme of Jacobian type is employed, and then the fully implicit scheme is used in the sub-domains. Here, in the explicit scheme of Jacobian type, the values at the points being adjacent to the interface points are taken as the linear combination of values of previous two time layers at the adjoining points of the inner interface. For the construction of another new parallel difference scheme, the main procedure is as follows. Firstly the linear combination of values of previous two time layers at the interface points among the sub-domains is used as the (Dirichlet) boundary condition for solving the sub-domain problems. Then the values in the sub-domains are calculated by the fully implicit scheme. Finally the interface values are computed by the fully implicit scheme, and in fact these calculations of the last step are explicit since the values adjacent to the interface points have been obtained in the previous step. The existence, uniqueness, unconditional stability and the second order accuracy of the discrete vector solutions for the parallel difference schemes are proved. Numerical results are presented to examine the stability, accuracy and parallelism of the parallel schemes.展开更多
基金This work was supported by the Special Funds for Major State Basic Research Projects (Grant No.2005CB321703)the National Natural Science Foundation of China (Grant Nos. 10476002, 60533020)the Science Foundation of CAEP (Grant No. 20060649)
文摘In this paper some new parallel difference schemes with interface extrapolation terms for a quasi-linear parabolic system of equations are constructed. Two types of time extrapolations are proposed to give the interface values on the interface of sub-domains or the values adjacent to the interface points, so that the unconditional stable parallel schemes with the second accuracy are formed. Without assuming heuristically that the original boundary value problem has the unique smooth vector solution, the existence and uniqueness of the discrete vector solutions of the parallel difference schemes constructed are proved. Moreover the unconditional stability of the parallel difference schemes is justified in the sense of the continuous dependence of the discrete vector solution of the schemes on the discrete known data of the original problems in the discrete W2(2,1) (Q△) norms. Finally the convergence of the discrete vector solutions of the parallel difference schemes with interface extrapolation terms to the unique generalized solution of the original quasi-linear parabolic problem is proved. Numerical results are presented to show the good performance of the parallel schemes, including the unconditional stability, the second accuracy and the high parallelism.
基金The project is supported by the Special Funds for Major State Basic Research Projects 2005CB321703, the National Nature Science Foundation of China (No. 10476002, 60533020).
文摘For solving nonlinear parabolic equation on massive parallel computers, the construction of parallel difference schemes with simple design, high parallelism and unconditional stability and second order global accuracy in space, has long been desired. In the present work, a new kind of general parallel difference schemes for the nonlinear parabolic system is proposed. The general parallel difference schemes include, among others, two new parallel schemes. In one of them, to obtain the interface values on the interface of sub-domains an explicit scheme of Jacobian type is employed, and then the fully implicit scheme is used in the sub-domains. Here, in the explicit scheme of Jacobian type, the values at the points being adjacent to the interface points are taken as the linear combination of values of previous two time layers at the adjoining points of the inner interface. For the construction of another new parallel difference scheme, the main procedure is as follows. Firstly the linear combination of values of previous two time layers at the interface points among the sub-domains is used as the (Dirichlet) boundary condition for solving the sub-domain problems. Then the values in the sub-domains are calculated by the fully implicit scheme. Finally the interface values are computed by the fully implicit scheme, and in fact these calculations of the last step are explicit since the values adjacent to the interface points have been obtained in the previous step. The existence, uniqueness, unconditional stability and the second order accuracy of the discrete vector solutions for the parallel difference schemes are proved. Numerical results are presented to examine the stability, accuracy and parallelism of the parallel schemes.