This paper studies the libration and stabilization of a parallel partial space elevator system in circular orbits. The system is made up of two paralleled partial space elevators, each of which consists of one main sa...This paper studies the libration and stabilization of a parallel partial space elevator system in circular orbits. The system is made up of two paralleled partial space elevators, each of which consists of one main satellite, one end body and a climber moving along the tether between them.The libration characteristics of the elevator are studied through numerical analysis by a new dynamic model, and a novel control strategy is proposed to stabilize the swing of the end body by projecting the climber speeds only. Optimal control method is used to implement the new control strategy in the case where the climbers move in opposite direction. The simulation results validate the effectiveness of the proposed control strategy whose application will neither sacrifice the transport efficiency nor exacerbate libration significantly.展开更多
基金supported by the Discovery Grant (No. RGPIN2018-05991)Discovery Accelerate Supplement Grant (No. RGPAS-2018-522709) of Natural Sciences and Engineering Research Council of CanadaGuangdong Basic and Applied Basic Research Foundation (No. 2019A1515111056)。
文摘This paper studies the libration and stabilization of a parallel partial space elevator system in circular orbits. The system is made up of two paralleled partial space elevators, each of which consists of one main satellite, one end body and a climber moving along the tether between them.The libration characteristics of the elevator are studied through numerical analysis by a new dynamic model, and a novel control strategy is proposed to stabilize the swing of the end body by projecting the climber speeds only. Optimal control method is used to implement the new control strategy in the case where the climbers move in opposite direction. The simulation results validate the effectiveness of the proposed control strategy whose application will neither sacrifice the transport efficiency nor exacerbate libration significantly.