In this paper, we make an initial value investigation of the unsteady flow of incompressible viscous fluid between two rigid non-conducting rotating parallel plates bounded by a porous medium under the influence of a ...In this paper, we make an initial value investigation of the unsteady flow of incompressible viscous fluid between two rigid non-conducting rotating parallel plates bounded by a porous medium under the influence of a uniform magnetic field of strength H0 inclined at an angle of inclination α with normal to the boundaries taking hall current into account. The perturbations are created by a constant pressure gradient along the plates in addition to the non-torsional oscillations of the upper plate while the lower plate is at rest. The flow in the porous medium is governed by the Brinkman’s equations. The exact solution of the velocity in the porous medium consists of steady state and transient state. The time required for the transient state to decay is evaluated in detail and the ultimate quasi-steady state solution has been derived analytically. Its behaviour is computationally discussed with reference to the various governing parameters. The shear stresses on the boundaries are also obtained analytically and their behaviour is computationally discussed.展开更多
Navigable flow condition simulations can provide detailed information on water depth and velocity distribution, simulation speed is one of the key factors which influence real-time navigation. In this paper, a navigab...Navigable flow condition simulations can provide detailed information on water depth and velocity distribution, simulation speed is one of the key factors which influence real-time navigation. In this paper, a navigable flow condition simulation system is developed to provide useful information for waterway management and shipping safety. To improve the simulation speed of 2-D hydrodynamic model, an explicit finite volume method and Open MP are used to realize parallel computing. Two mesh schemes and two computing platforms are adopted to study the parallel model's performance in the Yangtze River, China. The results show that the parallel model achieves dramatic acceleration, with a maximum speedup ratio of 34.94?. The parallel model can determine the flow state of the navigable channel in about 4 min, efficiency is further improved by a flow simulation scheme database. The developed system can provide early warning information for shipping safety, allowing ships to choose better routes and navigation areas according to real-time navigable flow conditions.展开更多
文摘In this paper, we make an initial value investigation of the unsteady flow of incompressible viscous fluid between two rigid non-conducting rotating parallel plates bounded by a porous medium under the influence of a uniform magnetic field of strength H0 inclined at an angle of inclination α with normal to the boundaries taking hall current into account. The perturbations are created by a constant pressure gradient along the plates in addition to the non-torsional oscillations of the upper plate while the lower plate is at rest. The flow in the porous medium is governed by the Brinkman’s equations. The exact solution of the velocity in the porous medium consists of steady state and transient state. The time required for the transient state to decay is evaluated in detail and the ultimate quasi-steady state solution has been derived analytically. Its behaviour is computationally discussed with reference to the various governing parameters. The shear stresses on the boundaries are also obtained analytically and their behaviour is computationally discussed.
基金Project supported by the 13th Five-Year National Key Research and Development Program of China(Grant No.2016YFC0401407)the 12th Five-Year National Key Tech-nology R&D Program(Grant No.2012BAB05B05)the National Natural Science Foundation of China(Grant No.51722901)
文摘Navigable flow condition simulations can provide detailed information on water depth and velocity distribution, simulation speed is one of the key factors which influence real-time navigation. In this paper, a navigable flow condition simulation system is developed to provide useful information for waterway management and shipping safety. To improve the simulation speed of 2-D hydrodynamic model, an explicit finite volume method and Open MP are used to realize parallel computing. Two mesh schemes and two computing platforms are adopted to study the parallel model's performance in the Yangtze River, China. The results show that the parallel model achieves dramatic acceleration, with a maximum speedup ratio of 34.94?. The parallel model can determine the flow state of the navigable channel in about 4 min, efficiency is further improved by a flow simulation scheme database. The developed system can provide early warning information for shipping safety, allowing ships to choose better routes and navigation areas according to real-time navigable flow conditions.